Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness.
Détails
ID Serval
serval:BIB_9A4CCAD20012
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness.
Périodique
American Journal of Human Genetics
ISSN
1537-6605 (Electronic)
ISSN-L
0002-9297
Statut éditorial
Publié
Date de publication
2012
Peer-reviewed
Oui
Volume
90
Numéro
2
Pages
321-330
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov'tPublication Status: ppublish
Résumé
Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.
Mots-clé
Alleles, Animals, Electroretinography/methods, Exome, Female, Genetic Heterogeneity, Genotyping Techniques/methods, Heterozygote, Homozygote, Humans, Male, Mice, Mutation, Myopia/genetics, Night Blindness/genetics, Phenotype, Polymorphism, Single Nucleotide, Protein Structure, Tertiary, Proteoglycans/genetics, Receptors, G-Protein-Coupled/genetics, Receptors, Metabotropic Glutamate/genetics, Retina/abnormalities, TRPM Cation Channels/genetics
Pubmed
Web of science
Open Access
Oui
Création de la notice
09/07/2012 9:00
Dernière modification de la notice
20/08/2019 15:01