pyTWMR: transcriptome-wide Mendelian randomization in python.

Détails

ID Serval
serval:BIB_975C14D52EEC
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
pyTWMR: transcriptome-wide Mendelian randomization in python.
Périodique
Bioinformatics
Auteur⸱e⸱s
Oreshkov S., Lepik K., Santoni F.
ISSN
1367-4811 (Electronic)
ISSN-L
1367-4803
Statut éditorial
Publié
Date de publication
02/08/2024
Peer-reviewed
Oui
Volume
40
Numéro
8
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Mendelian randomization (MR) is a widely used approach to estimate causal effect of variation in gene expression on complex traits. Among several MR-based algorithms, transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) enables the uses of multiple SNPs as instruments and multiple gene expression traits as exposures to facilitate causal inference in observational studies.
Here we present a Python-based implementation of TWMR and revTWMR. Our implementation offers GPU computational support for faster computations and robust computation mode resilient to highly correlated gene expressions and genetic variants.
pyTWMR is available at github.com/soreshkov/pyTWMR.
Mots-clé
Mendelian Randomization Analysis/methods, Transcriptome/genetics, Polymorphism, Single Nucleotide, Software, Algorithms, Humans
Pubmed
Web of science
Open Access
Oui
Création de la notice
19/08/2024 9:21
Dernière modification de la notice
05/09/2024 9:00
Données d'usage