Mechanical Properties and Nanomotion of BT-20 and ZR-75 Breast Cancer Cells Studied by Atomic Force Microscopy and Optical Nanomotion Detection Method.

Détails

Ressource 1Télécharger: 37830577.pdf (4582.05 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_957D09A6324D
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Mechanical Properties and Nanomotion of BT-20 and ZR-75 Breast Cancer Cells Studied by Atomic Force Microscopy and Optical Nanomotion Detection Method.
Périodique
Cells
Auteur⸱e⸱s
Starodubtseva M.N., Shkliarava N.M., Chelnokova I.A., Villalba M.I., Krylov A.Y., Nadyrov E.A., Kasas S.
ISSN
2073-4409 (Electronic)
ISSN-L
2073-4409
Statut éditorial
Publié
Date de publication
26/09/2023
Peer-reviewed
Oui
Volume
12
Numéro
19
Pages
2362
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Résumé
Cells of two molecular genetic types of breast cancer-hormone-dependent breast cancer (ZR-75 cell line) and triple-negative breast cancer (BT-20 cell line)-were studied using atomic force microscopy and an optical nanomotion detection method. Using the Peak Force QNM and Force Volume AFM modes, we revealed the unique patterns of the dependence of Young's modulus on the indentation depth for two cancer cell lines that correlate with the features of the spatial organization of the actin cytoskeleton. Within a 200-300 nm layer just under the cell membrane, BT-20 cells are stiffer than ZR-75 cells, whereas in deeper cell regions, Young's modulus of ZR-75 cells exceeds that of BT-20 cells. Two cancer cell lines also displayed a difference in cell nanomotion dynamics upon exposure to cytochalasin D, a potent actin polymerization inhibitor. The drug strongly modified the nanomotion pattern of BT-20 cells, whereas it had almost no effect on the ZR-75 cells. We are confident that nanomotion monitoring and measurement of the stiffness of cancer cells at various indentation depths deserve further studies to obtain effective predictive parameters for use in clinical practice.
Mots-clé
Humans, Microscopy, Atomic Force/methods, Actin Cytoskeleton/metabolism, Elastic Modulus, Cell Line, Triple Negative Breast Neoplasms/metabolism, BT-20 cell, ZR-75 cell, actin cytoskeleton, cancer cell, elastic modulus, nanomotion, viscoelasticity
Pubmed
Web of science
Open Access
Oui
Création de la notice
16/10/2023 8:11
Dernière modification de la notice
10/01/2024 7:15
Données d'usage