Non integrative lentiviral vactors for gene transfer in the retina

Détails

ID Serval
serval:BIB_953FD56B6752
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Collection
Publications
Institution
Titre
Non integrative lentiviral vactors for gene transfer in the retina
Titre de la conférence
Investigative ophthalmology and visual science
Auteur⸱e⸱s
Philippe S., Arsenijevic Y., Kostic C., Serguera C., Mallet J., Sarkis C.
Organisation
ARVO E-Abstract 3024
Statut éditorial
Publié
Date de publication
2009
Peer-reviewed
Oui
Volume
50
Langue
anglais
Résumé
Purpose:Lentiviral vectors are among the most efficient gene transfer tools for both dividing and non dividing cells, including pigmented epithelial cells of the retina. One of the latest developments in the field, which represents a significant advance in biosafety, consists in the use of non integrative lentiviral vectors (NILVs). These newly described tools were already shown to be efficient in various tissues, such as the retina. They allow prolonged transgene expression as long as the transduced cells do not divide or divide slowly. However, they were also shown to induce transgene expression less efficiently than their integrative counterparts. Further investigations are thus needed to improve their potential. To this aim, different strategies are under evaluation. In this study, we focused on using different integrase mutations.
Methods:We considered different integrase mutations, including modifications in the catalytic site and in the C-terminal domain of the enzyme. Lentiviral vectors bearing these mutant integrases and allowing expression of various transgenes were produced and characterized in vitro and in vivo. In particular, we evaluated their transgene expression capability. Influence of integrase mutation on the residual integration activity was also investigated.
Results:In line with the fact that the lentiviral integrase is involved in several steps of the replication cycle of lentiviruses, we observed that integrase mutations can modify lentiviral vector features, resulting in different transduction efficiencies as well as modulation of the integration activity.
Conclusions:NILVs appear as suitable tools for gene transfer in the retina, particularly to transduce RPE cells. They can be advantageously used, for instance, to develop neuroprotective strategies aimed at rescuing photoreceptors from death in various retinal diseases.
Création de la notice
03/02/2010 14:32
Dernière modification de la notice
20/08/2019 15:57
Données d'usage