Clinical commissioning of the first point-of-care spectral photon-counting CT for the upper extremities.
Détails
Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: Final published version
Licence: CC BY-NC-ND 4.0
Accès restreint UNIL
Etat: Public
Version: Final published version
Licence: CC BY-NC-ND 4.0
ID Serval
serval:BIB_94B8CEDDFC49
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Clinical commissioning of the first point-of-care spectral photon-counting CT for the upper extremities.
Périodique
Medical physics
ISSN
2473-4209 (Electronic)
ISSN-L
0094-2405
Statut éditorial
Publié
Date de publication
05/2023
Peer-reviewed
Oui
Volume
50
Numéro
5
Pages
2844-2859
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Résumé
Acceptance testing and quality assurance (QA) of computed tomography (CT) scans are of great importance to ensure the appropriate performance of the systems. However, current standards and guidelines do not include a dedicated QA program for spectral photon-counting CT (SPCCT), nor adapted tolerance levels.
To evaluate the technical performance, in terms of image quality and radiation dose, of the first point-of-care SPCCT for the upper extremities (MARS Extremity 5X120, MARS Bioimaging Ltd., Christchurch, New Zealand) and to establish a comprehensive QA program.
The specific dimensions of the scanner with a 125 mm diameter gantry and a small voxel size of 0.1 × 0.1 × 0.1 mm <sup>3</sup> require the use of suitable phantoms and evaluation techniques. Indicators such as CT number accuracy, image noise, uniformity, and slice thickness were assessed to characterize the image quality. The in-plane and longitudinal spatial resolutions were evaluated by means of the modulation transfer function (MTF). Noise power spectra (NPS) were calculated to further evaluate the image noise. Material identification capabilities were assessed using clinically relevant high-Z materials (iodine, gold, gadolinium, and calcium). A 100-mm diameter CTDI-like phantom was used to measure the dose indices. A complete radiation survey was carried out to measure the radiation exposure at different points around the scanner.
The proposed QA program is based on international and local recommendations as well as practical experience. It includes standardised CT tests and SPCCT-specific methods. Additional methodologies to further assess the system performance are also presented. Tolerance levels are discussed and revised when appropriate. Both in-plane and longitudinal high spatial resolutions were evidenced by the MTF measurements with 1.8 lp· mm <sup>-1</sup> and 5.0 lp· mm <sup>-1</sup> at 10%, respectively. The calculated effective slice thickness ranged between 0.15 and 0.16 mm for the five energy bins and for a reconstructed voxel size of 0.1 × 0.1 × 0.1 mm <sup>3</sup> . Reference values of the linear attenuation coefficient of water have been calculated and used to assess the CT number uniformity of water. Evaluation of the CT number accuracy and stability of various clinically relevant materials showed excellent spectral correlation and linearity between HU values and concentrations (r <sup>2</sup> > 0.99). The NPS showed less noise correlation between slices than within transverse slice, as well as a systematic increase at low spatial frequencies. The volume CT dose index (CTDI ) for a custom-made 100 mm diameter phantom was 9.32 mGy. Radiation measurements around the scanner showed that it is completely shielded except for the access port, and that no additional protective measures are necessary for the patient.
A routine QA framework for SPCCT systems has been proposed. Image quality and radiation dose were assessed using newly designed phantoms, relevant metrics, and automated algorithms. Baseline values were established and tolerance levels discussed for the MARS SPCCT scanner based on collected data and international recommendations.
To evaluate the technical performance, in terms of image quality and radiation dose, of the first point-of-care SPCCT for the upper extremities (MARS Extremity 5X120, MARS Bioimaging Ltd., Christchurch, New Zealand) and to establish a comprehensive QA program.
The specific dimensions of the scanner with a 125 mm diameter gantry and a small voxel size of 0.1 × 0.1 × 0.1 mm <sup>3</sup> require the use of suitable phantoms and evaluation techniques. Indicators such as CT number accuracy, image noise, uniformity, and slice thickness were assessed to characterize the image quality. The in-plane and longitudinal spatial resolutions were evaluated by means of the modulation transfer function (MTF). Noise power spectra (NPS) were calculated to further evaluate the image noise. Material identification capabilities were assessed using clinically relevant high-Z materials (iodine, gold, gadolinium, and calcium). A 100-mm diameter CTDI-like phantom was used to measure the dose indices. A complete radiation survey was carried out to measure the radiation exposure at different points around the scanner.
The proposed QA program is based on international and local recommendations as well as practical experience. It includes standardised CT tests and SPCCT-specific methods. Additional methodologies to further assess the system performance are also presented. Tolerance levels are discussed and revised when appropriate. Both in-plane and longitudinal high spatial resolutions were evidenced by the MTF measurements with 1.8 lp· mm <sup>-1</sup> and 5.0 lp· mm <sup>-1</sup> at 10%, respectively. The calculated effective slice thickness ranged between 0.15 and 0.16 mm for the five energy bins and for a reconstructed voxel size of 0.1 × 0.1 × 0.1 mm <sup>3</sup> . Reference values of the linear attenuation coefficient of water have been calculated and used to assess the CT number uniformity of water. Evaluation of the CT number accuracy and stability of various clinically relevant materials showed excellent spectral correlation and linearity between HU values and concentrations (r <sup>2</sup> > 0.99). The NPS showed less noise correlation between slices than within transverse slice, as well as a systematic increase at low spatial frequencies. The volume CT dose index (CTDI ) for a custom-made 100 mm diameter phantom was 9.32 mGy. Radiation measurements around the scanner showed that it is completely shielded except for the access port, and that no additional protective measures are necessary for the patient.
A routine QA framework for SPCCT systems has been proposed. Image quality and radiation dose were assessed using newly designed phantoms, relevant metrics, and automated algorithms. Baseline values were established and tolerance levels discussed for the MARS SPCCT scanner based on collected data and international recommendations.
Mots-clé
Humans, Point-of-Care Systems, Image Processing, Computer-Assisted/methods, Tomography, X-Ray Computed/methods, Phantoms, Imaging, Upper Extremity/diagnostic imaging, Water, MARS Extremity 5X120, commissioning, image quality, quality assurance, radiation dose, spectral photon-counting CT
Pubmed
Web of science
Open Access
Oui
Création de la notice
28/02/2023 14:35
Dernière modification de la notice
30/08/2023 5:59