Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust Drosophila locomotion to nutritional state.

Détails

ID Serval
serval:BIB_9445E73CE560
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust Drosophila locomotion to nutritional state.
Périodique
Proceedings of the National Academy of Sciences of the United States of America
Auteur⸱e⸱s
Schützler N., Girwert C., Hügli I., Mohana G., Roignant J.Y., Ryglewski S., Duch C.
ISSN
1091-6490 (Electronic)
ISSN-L
0027-8424
Statut éditorial
Publié
Date de publication
26/02/2019
Peer-reviewed
Oui
Volume
116
Numéro
9
Pages
3805-3810
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
Adrenergic signaling profoundly modulates animal behavior. For example, the invertebrate counterpart of norepinephrine, octopamine, and its biological precursor and functional antagonist, tyramine, adjust motor behavior to different nutritional states. In Drosophila larvae, food deprivation increases locomotor speed via octopamine-mediated structural plasticity of neuromuscular synapses, whereas tyramine reduces locomotor speed, but the underlying cellular and molecular mechanisms remain unknown. We show that tyramine is released into the CNS to reduce motoneuron intrinsic excitability and responses to excitatory cholinergic input, both by tyramine <sup>honoka</sup> receptor activation and by downstream decrease of L-type calcium current. This central effect of tyramine on motoneurons is required for the adaptive reduction of locomotor activity after feeding. Similarly, peripheral octopamine action on motoneurons has been reported to be required for increasing locomotion upon starvation. We further show that the level of tyramine-β-hydroxylase (TBH), the enzyme that converts tyramine into octopamine in aminergic neurons, is increased by food deprivation, thus selecting between antagonistic amine actions on motoneurons. Therefore, octopamine and tyramine provide global but distinctly different mechanisms to regulate motoneuron excitability and behavioral plasticity, and their antagonistic actions are balanced within a dynamic range by nutritional effects on TBH.
Mots-clé
Animals, Behavior, Animal/physiology, Calcium Channels, L-Type/genetics, Calcium Channels, L-Type/metabolism, Drosophila melanogaster/genetics, Drosophila melanogaster/metabolism, Drosophila melanogaster/physiology, Food Deprivation/physiology, Larva/metabolism, Larva/physiology, Locomotion/genetics, Locomotion/physiology, Mixed Function Oxygenases/genetics, Mixed Function Oxygenases/metabolism, Motor Neurons/metabolism, Motor Neurons/physiology, Nutritional Status/genetics, Nutritional Status/physiology, Octopamine/genetics, Octopamine/metabolism, Receptors, Biogenic Amine/genetics, Receptors, Biogenic Amine/metabolism, Synapses/metabolism, Synapses/physiology, Tyramine/metabolism, Dmca1D, biogenic amine, calcium channel, insect, neuromodulation
Pubmed
Web of science
Open Access
Oui
Création de la notice
28/10/2019 13:27
Dernière modification de la notice
29/10/2019 7:26
Données d'usage