Stem cell populations derived from heart and pancreas show a with a unique phenotype and give rise to functional cardiomyocytes and insulin-producing cells, respectively

Détails

ID Serval
serval:BIB_9185BE451C57
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Collection
Publications
Institution
Titre
Stem cell populations derived from heart and pancreas show a with a unique phenotype and give rise to functional cardiomyocytes and insulin-producing cells, respectively
Titre de la conférence
ESC Congress
Auteur(s)
Roehrich M. E., Spicher A., Vogt P., Vassalli G.
Adresse
Stockholm, Sweden, August 28-September 01, 2010
ISBN
0195-668X
Statut éditorial
Publié
Date de publication
2010
Peer-reviewed
Oui
Volume
31
Série
European Heart Journal
Pages
398-398
Langue
anglais
Notes
Publication type : Meeting Abstract
Résumé
Introduction: Recently, mesenchymal stem cells (MSC) of perivascular origin have been identified in several organs not including the heart. Using a novel cell isolation protocol, we have isolated cells sharing common characteristics from mouse hearts and pancreas. The aim of the present study was to characterize these cells in vitro.Methods: Cells were isolated from neonatal and adult mouse hearts and pancreas and cultured for more than 6 months. Surface marker expression was analyzed by flow cytometry and immunocytochemistry. Cell differentiation was tested using multiple differentiation media. Insulin production by pancreas-derived cells was tested by dithizone staining.Results: Cells showing a similar, distinctive morphology were obtained from the heart and pancreas after 4-8 weeks of culture. Cells from the two organs also showed a very similar immunophenotype, characterized by expression of c-kit (stem cell factor receptor), CD44, the common leukocyte marker CD45, and the monocytic markers CD11b and CD14. A significant proportion of cardiac and pancreatic cells expressed NG2, a marker for pericytes and other vascular cells. A significant proportion of cardiac, but not of pancreatic cells expressed stem cell antigen-1 (Sca-1). However, cells did not express T, B or dendritic cell markers. Cells of both cardiac and pancreatic origin spontaneously formed "spheres" (spherical cell aggregates similar to "neurospheres" formed by neural stem cells) in vitro. Cardiosphere formation was enhanced by TNF-alpha. Several cardiospheres (but no "pancreatospheres") derived from neonatal (but not adult) cells showed spontaneous rhythmic contractions, thus demonstrating cardiac differentiation (this was confirmed by immunostaining for alpha-sarcomeric actinin). Beating activity was enhanced by low serum conditions. Cells from both organs formed adipocytes, osteocytes and osteocytes under appropriate conditions, the typical differentiation pattern of MSCs. Pancreas-derived cells also formed dithizonepositive insulin-producing cells.Conclusions: We have defined cardiac and pancreatic cell populations that share a common morphology, growth characteristics, and a unique immunophenotype. Expression of perivascular and monocytic markers, along with stem/priogenitor cell markers by these cells suggests a relationship with pericytes-mesoangioblasts and so-called multipotent monocytes. Cells show MSC-typical growth and differentiation patterns, together with tissue-specific differentiation potential: cardiomyocytes for cardiac-derived cells and insulinproducing cells for pancreas-derived cells.
Web of science
Création de la notice
13/04/2011 10:25
Dernière modification de la notice
20/08/2019 15:54
Données d'usage