Modeling, Predicting and Capturing Human Mobility
Détails
Télécharger: vkulkarn_thesis-OK.pdf (20109.26 [Ko])
Etat: Public
Version: Après imprimatur
Licence: Non spécifiée
Etat: Public
Version: Après imprimatur
Licence: Non spécifiée
ID Serval
serval:BIB_918245145AD0
Type
Thèse: thèse de doctorat.
Collection
Publications
Institution
Titre
Modeling, Predicting and Capturing Human Mobility
Directeur⸱rice⸱s
Garbinato Benoît
Détails de l'institution
Université de Lausanne, Faculté des hautes études commerciales
Statut éditorial
Acceptée
Date de publication
11/10/2019
Langue
anglais
Résumé
Realistic models of human mobility are critical for modern day applications, specifically for recommendation systems, resource planning and process optimization domains. Given the rapid proliferation of mobile devices equipped with Internet connectivity and GPS functionality today, aggregating large sums of individual geolocation data is feasible. The thesis focuses on methodologies to facilitate data-driven mobility modeling by drawing parallels between the inherent nature of mobility trajectories, statistical physics and information theory. On the applied side, the thesis contributions lie in leveraging the formulated mobility models to construct prediction workflows by adopting a privacy-by-design perspective. This enables end users to derive utility from location-based services while preserving their location privacy. Finally, the thesis presents several approaches to generate large-scale synthetic mobility datasets by applying machine learning approaches to facilitate experimental reproducibility.
Mots-clé
Human mobility modeling, point of interest retrieval, next-place prediction, synthetic geospatial data, mobility meta-attributes
Open Access
Oui
Financement(s)
Fonds national suisse / 000-157160
Création de la notice
16/10/2019 16:11
Dernière modification de la notice
22/03/2024 8:24