Accounting for extrinsic variability in the estimation of stochastic rate constants
Détails
ID Serval
serval:BIB_9173830ECF8F
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Accounting for extrinsic variability in the estimation of stochastic rate constants
Périodique
International Journal of Robust Nonlinear Control
ISSN
1049-8923
Statut éditorial
Publié
Date de publication
2012
Volume
221
Numéro
10
Pages
1103-1119
Langue
anglais
Résumé
Single-cell recordings of transcriptional and post-transcriptional processes reveal the inherent stochasticity of cellular events. However, to a large extent, the observed variability in isogenic cell populations is due to extrinsic factors, such as difference in expression capacity, cell volume and cell cycle stageto name a few. Thus, such experimental data represents a convolution of effects from stochastic kinetics and extrinsic noise sources. Recent parameter inference schemes for single-cell data just account for variability because of molecular noise. Here, we present a Bayesian inference scheme that deconvolutes the two sources of variability and enables us to obtain optimal estimates of stochastic rate constants of low copy-number events and extract statistical information about cell-to-cell variability. In contrast to previous attempts, we model extrinsic noise by a variability in the abundance of mass-conserved species, rather than a variability in kinetic parameters. We apply the scheme to a simple model of the osmostress-induced transcriptional activation in budding yeast.
Mots-clé
cell-to-cell variability, stochastic chemical kinetics, mass conservation, Bayesian estimation, MAPK Hog1 signaling pathway
Web of science
Création de la notice
22/10/2012 12:17
Dernière modification de la notice
20/08/2019 14:54