Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1.

Détails

ID Serval
serval:BIB_8C255D6C2AD6
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1.
Périodique
Proceedings of the National Academy of Sciences of the United States of America
Auteur⸱e⸱s
Margittai M., Widengren J., Schweinberger E., Schröder G.F., Felekyan S., Haustein E., König M., Fasshauer D., Grubmüller H., Jahn R., Seidel C.A.
ISSN
0027-8424 (Print)
ISSN-L
0027-8424
Statut éditorial
Publié
Date de publication
2003
Peer-reviewed
Oui
Volume
100
Numéro
26
Pages
15516-15521
Langue
anglais
Résumé
Protein conformational transitions form the molecular basis of many cellular processes, such as signal transduction and membrane traffic. However, in many cases, little is known about their structural dynamics. Here we have used dynamic single-molecule fluorescence to study at high time resolution, conformational transitions of syntaxin 1, a soluble N-ethylmaleimide-sensitive factor attachment protein receptors protein essential for exocytotic membrane fusion. Sets of syntaxin double mutants were randomly labeled with a mix of donor and acceptor dye and their fluorescence resonance energy transfer was measured. For each set, all fluorescence information was recorded simultaneously with high time resolution, providing detailed information on distances and dynamics that were used to create structural models. We found that free syntaxin switches between an inactive closed and an active open configuration with a relaxation time of 0.8 ms, explaining why regulatory proteins are needed to arrest the protein in one conformational state.
Mots-clé
Amino Acid Substitution, Antigens, Surface/chemistry, Antigens, Surface/metabolism, Cysteine, Fluorescence Resonance Energy Transfer, Kinetics, Models, Molecular, Mutagenesis, Site-Directed, Nerve Tissue Proteins/chemistry, Nerve Tissue Proteins/metabolism, Protein Conformation, Recombinant Proteins/chemistry, Recombinant Proteins/metabolism, Serine, Syntaxin 1
Pubmed
Web of science
Open Access
Oui
Création de la notice
15/09/2011 10:16
Dernière modification de la notice
20/08/2019 15:50
Données d'usage