Animal Tissue Response To Mid-Term Electronic Modular Artificial Sphincter Implantation

Détails

ID Serval
serval:BIB_8B7D3E9DE36A
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Collection
Publications
Institution
Titre
Animal Tissue Response To Mid-Term Electronic Modular Artificial Sphincter Implantation
Titre de la conférence
AUA 2011,
Auteur(s)
Valerio M., Jichlinski P., Dahlem R., Wieland M., Tozzi P., Hayoz D., Mundy A.R.
Adresse
Washington, United-States, May 14-19, 2011
ISBN
0022-5347
ISSN-L
0022-5347
Statut éditorial
Publié
Date de publication
2011
Peer-reviewed
Oui
Volume
184
Série
Journal of Urology
Pages
e39, A92
Langue
anglais
Résumé
Introduction and objectives: The AMS 800TM is considered the gold standard for sphincter replacement. However, the one-ring design can erode the urethra and lead to severe complications. A mechanism that could alternatively compress successive segments of the urethra would limit such deleterious outcome. We report 12 weeks animal urethral tissue analysis following implantation of a new modular artificial sphincter. METHODS: The device is composed by three parts: the contractile unit, two rings and an integrated microprocessor. The contractile unit is made of Nitinol fibers. The rings are placed around the urethra to control the flow of urine by squeezing the urethra. They work in a sequential alternative mode and are controlled by a microprocessor connected to an external computer. The computer can reveal specific failure of device components. The device was impkanted in eight male sheep. The rings were positioned around the urethra and the control unit was placed 5cm away. The device was working twenty hours per day; it was open 10min. per hour to allow urination. The animals were sacrificed after 12 weeks. The urethra and the tissues surrounding the control unit were macroscopically and microscopically examined. Two transversal sections crossing the sphincter and two transversal sections crossing the urethra alone were obtained and stained with modified Paragon after resin embedding. Urethra was also embedded in paraffin. The first section was stained with safranin-hematoxylin-eosin, the second section was stained with Masson's Trichrome and the remaining eight sections were available for immunolabelling of the macrophages.Results: The chronic study went uneventful. No clinical infection or pain was observed. The computer registered no specific failure in ring function, Nitinol wires and tube connectors. At explantation, except for a slight grade of lymphocytes in two out of eight specimens, no urethral stricture or atrophy could be observed. Immunohistochemistry confirmed the absence of macrophages. Tissue structure and organization of the urethra with and without artificial sphincter were similar. No migration of the device was observed.Conclusions: The study clearly showed no tissue damage or inflammation of the urethra. Electronic design, preservation of urethral vascularisation and adjustability after implantation are the key ideas to improve the actual AUS. Further studies will be carried out to evaluate this potential.
Création de la notice
28/12/2011 12:17
Dernière modification de la notice
20/08/2019 15:50
Données d'usage