Multilayered control of chromosome replication in Caulobacter crescentus.
Détails
Télécharger: Frandi19.pdf (1066.36 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY-NC-ND 4.0
Etat: Public
Version: Final published version
Licence: CC BY-NC-ND 4.0
ID Serval
serval:BIB_8AE1B9583D91
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Multilayered control of chromosome replication in Caulobacter crescentus.
Périodique
Biochemical Society transactions
ISSN
1470-8752 (Electronic)
ISSN-L
0300-5127
Statut éditorial
Publié
Date de publication
28/02/2019
Peer-reviewed
Oui
Volume
47
Numéro
1
Pages
187-196
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't ; Review
Publication Status: ppublish
Publication Status: ppublish
Résumé
The environmental Alphaproteobacterium Caulobacter crescentus is a classical model to study the regulation of the bacterial cell cycle. It divides asymmetrically, giving a stalked cell that immediately enters S phase and a swarmer cell that stays in the G1 phase until it differentiates into a stalked cell. Its genome consists in a single circular chromosome whose replication is tightly regulated so that it happens only in stalked cells and only once per cell cycle. Imbalances in chromosomal copy numbers are the most often highly deleterious, if not lethal. This review highlights recent discoveries on pathways that control chromosome replication when Caulobacter is exposed to optimal or less optimal growth conditions. Most of these pathways target two proteins that bind directly onto the chromosomal origin: the highly conserved DnaA initiator of DNA replication and the CtrA response regulator that is found in most Alphaproteobacteria The concerted inactivation and proteolysis of CtrA during the swarmer-to-stalked cell transition license cells to enter S phase, while a replisome-associated Regulated Inactivation and proteolysis of DnaA (RIDA) process ensures that initiation starts only once per cell cycle. When Caulobacter is stressed, it turns on control systems that delay the G1-to-S phase transition or the elongation of DNA replication, most probably increasing its fitness and adaptation capacities.
Mots-clé
Caulobacter crescentus/genetics, Caulobacter crescentus/metabolism, Chromosomes, Bacterial/genetics, DNA Replication/genetics, DNA Replication/physiology, Gene Expression Regulation, Bacterial/genetics, Gram-Negative Bacteria/genetics, Gram-Negative Bacteria/metabolism, Caulobacter, CtrA, DNA replication and recombination, DnaA, Gram-negative bacteria, chromosomes
Pubmed
Web of science
Open Access
Oui
Création de la notice
28/01/2019 13:57
Dernière modification de la notice
21/11/2022 8:22