Photon-Counting Detector CT With Quantum Iterative Reconstruction: Impact on Liver Lesion Detection and Radiation Dose Reduction.
Détails
ID Serval
serval:BIB_86FDF9595087
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Photon-Counting Detector CT With Quantum Iterative Reconstruction: Impact on Liver Lesion Detection and Radiation Dose Reduction.
Périodique
Investigative radiology
ISSN
1536-0210 (Electronic)
ISSN-L
0020-9996
Statut éditorial
Publié
Date de publication
01/04/2023
Peer-reviewed
Oui
Volume
58
Numéro
4
Pages
245-252
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Résumé
To assess image noise, diagnostic performance, and potential for radiation dose reduction of photon-counting detector (PCD) computed tomography (CT) with quantum iterative reconstruction (QIR) in the detection of hypoattenuating and hyperattenuating focal liver lesions compared with energy-integrating detector (EID) CT.
A medium-sized anthropomorphic abdominal phantom with liver parenchyma and lesions (diameter, 5-10 mm; hypoattenuating and hyperattenuating from -30 HU to +90 HU at 120 kVp) was used. The phantom was imaged on ( a ) a third-generation dual-source EID-CT (SOMATOM Force, Siemens Healthineers) in the dual-energy mode at 100 and 150 kVp with tin filtration and ( b ) a clinical dual-source PCD-CT at 120 kVp (NAEOTOM Alpha, Siemens). Scans were repeated 10 times for each of 3 different radiation doses of 5, 2.5, and 1.25 mGy. Datasets were reconstructed as virtual monoenergetic images (VMIs) at 60 keV for both scanners and as linear-blended images (LBIs) for EID-CT. For PCD-CT, VMIs were reconstructed with different strength levels of QIR (QIR 1-4) and without QIR (QIR-off). For EID-CT, VMIs and LBIs were reconstructed using advanced modeled iterative reconstruction at a strength level of 3. Noise power spectrum was measured to compare image noise magnitude and texture. A channelized Hotelling model observer was used to assess diagnostic accuracy for lesion detection. The potential for radiation dose reduction using PCD-CT was estimated for the QIR strength level with the highest area under the curve compared with EID-CT for each radiation dose.
Image noise decreased with increasing QIR level at all radiation doses. Using QIR-4, noise reduction was 41%, 45%, and 59% compared with EID-CT VMIs and 12%, 18%, and 33% compared with EID-CT LBIs at 5, 2.5, and 1.25 mGy, respectively. The peak spatial frequency shifted slightly to lower frequencies at higher QIR levels. Lesion detection accuracy increased at higher QIR levels and was higher for PCD-CT compared with EID-CT VMIs. The improvement in detection with PCD-CT was strongest at the lowest radiation dose, with an area under the receiver operating curve of 0.917 for QIR-4 versus 0.677 for EID-CT VMIs for hyperattenuating lesions, and 0.900 for QIR-4 versus 0.726 for EID-CT VMIs for hypoattenuating lesions. Compared with EID-CT LBIs, detection was higher for QIR 1-4 at 2.5 mGy and for QIR 2-4 at 1.25 mGy (eg, 0.900 for QIR-4 compared with 0.854 for EID-CT LBIs at 1.25 mGy). Radiation dose reduction potential of PCD-CT with QIR-4 was 54% at 5 mGy compared with VMIs and 39% at 2.5 mGy compared with LBIs.
Compared with EID-CT, PCD-CT with QIR substantially improved focal liver lesion detection, especially at low radiation dose. This enables substantial radiation dose reduction while maintaining diagnostic accuracy.
A medium-sized anthropomorphic abdominal phantom with liver parenchyma and lesions (diameter, 5-10 mm; hypoattenuating and hyperattenuating from -30 HU to +90 HU at 120 kVp) was used. The phantom was imaged on ( a ) a third-generation dual-source EID-CT (SOMATOM Force, Siemens Healthineers) in the dual-energy mode at 100 and 150 kVp with tin filtration and ( b ) a clinical dual-source PCD-CT at 120 kVp (NAEOTOM Alpha, Siemens). Scans were repeated 10 times for each of 3 different radiation doses of 5, 2.5, and 1.25 mGy. Datasets were reconstructed as virtual monoenergetic images (VMIs) at 60 keV for both scanners and as linear-blended images (LBIs) for EID-CT. For PCD-CT, VMIs were reconstructed with different strength levels of QIR (QIR 1-4) and without QIR (QIR-off). For EID-CT, VMIs and LBIs were reconstructed using advanced modeled iterative reconstruction at a strength level of 3. Noise power spectrum was measured to compare image noise magnitude and texture. A channelized Hotelling model observer was used to assess diagnostic accuracy for lesion detection. The potential for radiation dose reduction using PCD-CT was estimated for the QIR strength level with the highest area under the curve compared with EID-CT for each radiation dose.
Image noise decreased with increasing QIR level at all radiation doses. Using QIR-4, noise reduction was 41%, 45%, and 59% compared with EID-CT VMIs and 12%, 18%, and 33% compared with EID-CT LBIs at 5, 2.5, and 1.25 mGy, respectively. The peak spatial frequency shifted slightly to lower frequencies at higher QIR levels. Lesion detection accuracy increased at higher QIR levels and was higher for PCD-CT compared with EID-CT VMIs. The improvement in detection with PCD-CT was strongest at the lowest radiation dose, with an area under the receiver operating curve of 0.917 for QIR-4 versus 0.677 for EID-CT VMIs for hyperattenuating lesions, and 0.900 for QIR-4 versus 0.726 for EID-CT VMIs for hypoattenuating lesions. Compared with EID-CT LBIs, detection was higher for QIR 1-4 at 2.5 mGy and for QIR 2-4 at 1.25 mGy (eg, 0.900 for QIR-4 compared with 0.854 for EID-CT LBIs at 1.25 mGy). Radiation dose reduction potential of PCD-CT with QIR-4 was 54% at 5 mGy compared with VMIs and 39% at 2.5 mGy compared with LBIs.
Compared with EID-CT, PCD-CT with QIR substantially improved focal liver lesion detection, especially at low radiation dose. This enables substantial radiation dose reduction while maintaining diagnostic accuracy.
Mots-clé
Humans, Drug Tapering, Photons, Tomography, X-Ray Computed/methods, Phantoms, Imaging, Liver Neoplasms/diagnostic imaging
Pubmed
Web of science
Création de la notice
13/09/2022 9:49
Dernière modification de la notice
04/05/2023 6:52