MALT1 and Caspase-10 : two cysteine proteases controlling lymphocyte activation


Demande d'une copie
ID Serval
Thèse: thèse de doctorat.
MALT1 and Caspase-10 : two cysteine proteases controlling lymphocyte activation
Charton J. E.
Thome-Miazza  M.
Détails de l'institution
Université de Lausanne, Faculté de biologie et médecine
Faculté de biologie et de médecineUniversité de LausanneUNIL - BugnonRue du Bugnon 21 - bureau 4111CH-1015 LausanneSUISSE
Statut éditorial
Date de publication
Nombre de pages
Τ cell activation via the Τ cell receptor (TCR) through antigen recognition is one of the key steps to initiate the adaptive immune response. The mechanisms controlling TCR-induced signaling pathways are the subject of intense research, since deregulated signaling in lymphocytes can lead to immunodeficiency, autoimmunity or lymphomas. In Τ lymphocytes a complex composed of CARMA1, BCL10 and MALT1 has been identified to receive signals from TCR proximal events and to induce further signals crucial for Τ cell activation. MALT1 is scaffold protein and a cysteine protease and both functions have been shown, among other effects, to be crucial to initiate the activation of the transcription factors of the nuclear factor κΒ (NF-κΒ) family after TCR-stimulation. Several proteolytic targets have been described recently and all of them play roles in modulating NF-κΒ activation or other aspects of Τ cell activation. In this study, we describe a novel target of MALT1, Caspase-10. Two isoforms of Caspase-10 are cleaved by MALTI in Τ and Β cells after antigen receptor stimulation. Caspases are a family of cysteine proteases that are known for their roles in cell death and certain immune functions. Caspase-10 has so far only been reported to be involved in the induction of apoptosis. However it is very closely related to the well-characterized Caspase-8 that has been reported to be involved in Τ cell activation. In the present study, we describe a crucial role for Caspase-10, but not Caspase-8, in Τ cell activation after TCR stimulation. Jurkat Τ cells silenced for Caspase-10 expression exhibit a dramatic reduction in IL-2 production following stimulation. The data obtained revealed that this is due to severely reduced activation of activator protein-1 (AP-1), another transcription factor family with key functions in the process of Τ cell activation. We observed strongly reduced expression levels of the AP-1 family member c-Fos after Τ cell stimulation. This transcription factor is expressed upon TCR stimulation and is a crucial component of AP-1 transcription factor dimers required for Τ cell activation. In further analysis, it was shown that this defect is not based on reduced transcription, as the c-Fos mRNA levels are not altered, but rather seems to be caused by a defect in translation or protein stability in the absence of Caspase-10. Furthermore, we report a potential interaction of the c-Fos protein and Caspsae-10. This role of Caspase-10 in AP-1 activation however is independent of its cleavage by MALT1, leaving the role of Caspase-10 cleavage in activated lymphocytes unclear. Taken together, these results give new insights into the complex matter of lymphocyte activation whose understanding is crucial for the development of new drugs modulating the immune response or inhibiting lymphoma progression.
Création de la notice
08/07/2013 10:06
Dernière modification de la notice
20/08/2019 14:45
Données d'usage