Weighting schemes for federated learning in heterogeneous and imbalanced segmentation datasets
Détails
ID Serval
serval:BIB_8576F8F4C127
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Weighting schemes for federated learning in heterogeneous and imbalanced segmentation datasets
Titre de la conférence
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
Editeur
Springer Cham
Adresse
Singapore
ISBN
978-3-031-33842-7
Statut éditorial
Publié
Date de publication
18/07/2023
Peer-reviewed
Oui
Editeur⸱rice scientifique
Crimi Alessandro, Bakas Spyridon
Volume
13769
Série
Lecture Notes in Computer Science
Langue
anglais
Résumé
Federated learning allows for training deep learning models from various sources (e.g., hospitals) without sharing patient information, but only the model weights. Two central problems arise when sending the updated weights to the central node in a federation: the imbalance of the datasets and data heterogeneity caused by differences in scanners or acquisition protocols. In this paper, we benchmark the federated average algorithm and adapt two weighting functions to counteract the effect of data imbalance. The approaches are validated on a segmentation task with synthetic data from imbalanced centers, and on two multi-centric datasets with the clinically relevant tasks of stroke infarct core prediction and brain tumor segmentation. The results show that accounting for the imbalance in the data sources improves the federated average aggregation in different perfusion CT and structural MRI images in the ISLES and BraTS19 datasets, respectively.
Création de la notice
10/10/2022 8:50
Dernière modification de la notice
21/02/2024 7:16