Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons.

Détails

ID Serval
serval:BIB_8310F6D540ED
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons.
Périodique
Journal of Neuroscience
Auteur⸱e⸱s
Luthi A., Di Paolo G., Cremona O., Daniell L., De Camilli P., McCormick D.A.
ISSN
1529-2401
Statut éditorial
Publié
Date de publication
2001
Peer-reviewed
Oui
Volume
21
Numéro
23
Pages
9101-9111
Langue
anglais
Résumé
Inhibitory synapses in the CNS can exhibit a considerable stability of neurotransmission over prolonged periods of high-frequency stimulation. Previously, we showed that synaptojanin 1 (SJ1), a presynaptic polyphosphoinositide phosphatase, is required for normal synaptic vesicle recycling (Cremona et al., 1999). We asked whether the stability of inhibitory synaptic responses was dependent on SJ1. Whole-cell patch-clamp recordings of unitary IPSCs were obtained in primary cortical cultures between cell pairs containing a presynaptic, fast-spiking inhibitory neuron (33.5-35 degrees C). Prolonged presynaptic stimulation (1000 stimuli, 2-20 Hz) evoked postsynaptic responses that decreased in size with a bi-exponential time course. A fast component developed within a few stimuli and was quantified with paired-pulse protocols. Paired-pulse depression (PPD) appeared to be independent of previous GABA release at intervals of >/=100 msec. The characteristics of PPD, and synaptic depression induced within the first approximately 80 stimuli in the trains, were unaltered in SJ1-deficient inhibitory synapses. A slow component of depression developed within hundreds of stimuli, and steady-state depression showed a sigmoidal dependence on stimulation frequency, with half-maximal depression at 6.0 +/- 0.5 Hz. Slow depression was increased when release probability was augmented, and there was a small negative correlation between consecutive synaptic amplitudes during steady-state depression, consistent with a presynaptic depletion process. Slow depression was increased in SJ1-deficient synapses, with half-maximal depression at 3.3 +/- 0.9 Hz, and the recovery was retarded approximately 3.6-fold. Our studies establish a link between a distinct kinetic component of physiologically monitored synaptic depression and a molecular modification known to affect synaptic vesicle reformation.
Mots-clé
Action Potentials, Animals, Animals, Newborn, Cells, Cultured, Cerebral Cortex, Electric Stimulation, Excitatory Amino Acid Antagonists, Excitatory Postsynaptic Potentials, GABA Antagonists, Mice, Nerve Tissue Proteins, Neural Inhibition, Neurons, Patch-Clamp Techniques, Phosphatidylinositols, Phosphoric Monoester Hydrolases, Sodium Channel Blockers, Synapses, Synaptic Transmission, Synaptic Vesicles, gamma-Aminobutyric Acid
Pubmed
Web of science
Création de la notice
26/02/2009 14:44
Dernière modification de la notice
20/08/2019 14:43
Données d'usage