PatchSorter: a high throughput deep learning digital pathology tool for object labeling.
Détails
Télécharger: 38902336.pdf (1621.76 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_7EF0B81D7F72
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
PatchSorter: a high throughput deep learning digital pathology tool for object labeling.
Périodique
NPJ digital medicine
ISSN
2398-6352 (Electronic)
ISSN-L
2398-6352
Statut éditorial
Publié
Date de publication
20/06/2024
Peer-reviewed
Oui
Volume
7
Numéro
1
Pages
164
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Résumé
The discovery of patterns associated with diagnosis, prognosis, and therapy response in digital pathology images often requires intractable labeling of large quantities of histological objects. Here we release an open-source labeling tool, PatchSorter, which integrates deep learning with an intuitive web interface. Using >100,000 objects, we demonstrate a >7x improvement in labels per second over unaided labeling, with minimal impact on labeling accuracy, thus enabling high-throughput labeling of large datasets.
Pubmed
Web of science
Open Access
Oui
Création de la notice
25/06/2024 8:09
Dernière modification de la notice
26/07/2024 6:02