Molecular and functional characterization of a novel cardiac-specific human tropomyosin isoform.

Détails

Ressource 1Télécharger: BIB_7A8D922AA3EC.P001.pdf (1423.65 [Ko])
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_7A8D922AA3EC
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Molecular and functional characterization of a novel cardiac-specific human tropomyosin isoform.
Périodique
Circulation
Auteur⸱e⸱s
Rajan Sudarsan, Jagatheesan Ganapathy, Karam Chehade N., Alves Marco L., Bodi Ilona, Schwartz Arnold, Bulcao Christian F., D'Souza Karen M., Akhter Shahab A., Boivin Greg P., Dube Dipak K, Petrashevskaya Natalia, Herr Andrew B., Hullin Roger, Liggett Stephen B., Wolska Beata M., Solaro R. John , Wieczorek David F.
ISSN
1524-4539[electronic]
Statut éditorial
Publié
Date de publication
2010
Peer-reviewed
Oui
Volume
121
Numéro
3
Pages
410-418
Langue
anglais
Résumé
BACKGROUND: Tropomyosin (TM), an essential actin-binding protein, is central to the control of calcium-regulated striated muscle contraction. Although TPM1alpha (also called alpha-TM) is the predominant TM isoform in human hearts, the precise TM isoform composition remains unclear. METHODS AND RESULTS: In this study, we quantified for the first time the levels of striated muscle TM isoforms in human heart, including a novel isoform called TPM1kappa. By developing a TPM1kappa-specific antibody, we found that the TPM1kappa protein is expressed and incorporated into organized myofibrils in hearts and that its level is increased in human dilated cardiomyopathy and heart failure. To investigate the role of TPM1kappa in sarcomeric function, we generated transgenic mice overexpressing cardiac-specific TPM1kappa. Incorporation of increased levels of TPM1kappa protein in myofilaments leads to dilated cardiomyopathy. Physiological alterations include decreased fractional shortening, systolic and diastolic dysfunction, and decreased myofilament calcium sensitivity with no change in maximum developed tension. Additional biophysical studies demonstrate less structural stability and weaker actin-binding affinity of TPM1kappa compared with TPM1alpha. CONCLUSIONS: This functional analysis of TPM1kappa provides a possible mechanism for the consequences of the TM isoform switch observed in dilated cardiomyopathy and heart failure patients.
Mots-clé
Cardiomyopathy, Contractility, Heart Failure, Myocardial Contraction, Cardiomyopathy-Causing Mutations, Human Heart-Failure, Adult-Mouse Heart, Alpha-Tropomyosin, Calcium Sensitivity, Filament Proteins, Beta-Tropomyosin, Skeletal-Muscle, Troponin-I, Expression
Pubmed
Web of science
Open Access
Oui
Création de la notice
08/02/2010 15:03
Dernière modification de la notice
20/08/2019 15:36
Données d'usage