Predicting Users' Motivations behind Location Check-Ins and Utility Implications of Privacy Protection Mechanisms

Détails

Ressource 1Télécharger: Bilogrevic15NDSS.pdf (2708.08 [Ko])
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_78C0943DCA20
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Titre
Predicting Users' Motivations behind Location Check-Ins and Utility Implications of Privacy Protection Mechanisms
Titre de la conférence
Proceedings of the 22nd Network and Distributed System Security Symposium (NDSS)
Auteur⸱e⸱s
Bilogrevic I., Huguenin K., Mihaila S., Shokri R., Hubaux J.-P.
Editeur
Internet Society
Adresse
San Diego, CA, USA
ISBN
1-891562-38-X
Statut éditorial
Publié
Date de publication
2015
Peer-reviewed
Oui
Pages
NA
Langue
anglais
Résumé
Location check-ins contain both geographical and semantic information about the visited venues, in the form of tags (e.g., “restaurant”). Such data might reveal some personal information about users beyond what they actually want to disclose, hence their privacy is threatened. In this paper, we study users’ motivations behind location check-ins, and we quantify the effect of a privacy-preserving technique (i.e., generalization) on the perceived utility of check-ins. By means of a targeted user study on Foursquare (N = 77), we show that the motivation behind Foursquare check-ins is a mediator of the loss of utility caused by generalization. Using these findings, we propose a machine learning method for determining the motivation behind each check-in, and we design a motivation-based predictive model for utility. Our results show that the model accurately predicts the loss of utility caused by semantic and geographical generalization; this model enables the design of utility-aware, privacy-enhancing mechanisms in location-based social networks.
Open Access
Oui
Création de la notice
30/11/2016 16:02
Dernière modification de la notice
20/08/2019 14:35
Données d'usage