Whole-body integration of gene expression and single-cell morphology.
Détails
Télécharger: 34380046_BIB_771424935863.pdf (125.48 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_771424935863
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Whole-body integration of gene expression and single-cell morphology.
Périodique
Cell
ISSN
1097-4172 (Electronic)
ISSN-L
0092-8674
Statut éditorial
Publié
Date de publication
02/09/2021
Peer-reviewed
Oui
Volume
184
Numéro
18
Pages
4819-4837.e22
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Résumé
Animal bodies are composed of cell types with unique expression programs that implement their distinct locations, shapes, structures, and functions. Based on these properties, cell types assemble into specific tissues and organs. To systematically explore the link between cell-type-specific gene expression and morphology, we registered an expression atlas to a whole-body electron microscopy volume of the nereid Platynereis dumerilii. Automated segmentation of cells and nuclei identifies major cell classes and establishes a link between gene activation, chromatin topography, and nuclear size. Clustering of segmented cells according to gene expression reveals spatially coherent tissues. In the brain, genetically defined groups of neurons match ganglionic nuclei with coherent projections. Besides interneurons, we uncover sensory-neurosecretory cells in the nereid mushroom bodies, which thus qualify as sensory organs. They furthermore resemble the vertebrate telencephalon by molecular anatomy. We provide an integrated browser as a Fiji plugin for remote exploration of all available multimodal datasets.
Mots-clé
Animals, Cell Nucleus/metabolism, Cell Shape, Ganglia, Invertebrate/metabolism, Gene Expression Profiling, Gene Expression Regulation, Multigene Family, Multimodal Imaging, Mushroom Bodies/metabolism, Polychaeta/cytology, Polychaeta/genetics, Polychaeta/ultrastructure, Single-Cell Analysis, Platynereis dumerilii, automatic segmentation, cell types, gene expression atlas, image registration, machine learning, multimodal data integration, mushroom bodies, telencephalon, volume electron microscopy
Pubmed
Web of science
Open Access
Oui
Création de la notice
24/08/2021 12:20
Dernière modification de la notice
21/11/2022 8:28