Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension

Détails

ID Serval
serval:BIB_75E1E9707098
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension
Périodique
American Journal of Human Genetics
Auteur⸱e⸱s
Zhu X., Feng T., Tayo B.O., Liang J., Young J.H., Franceschini N., Smith J.A., Yanek L.R., Sun Y.V., Edwards T.L., Chen W., Nalls M., Fox E., Sale M., Bottinger E., Rotimi C., Liu Y., Liu Y., McKnight B., Liu K., Arnett D.K., Chakravati A., Cooper R.S., Redline S.
Collaborateur⸱rice⸱s
COGENT BP Consortium
Contributeur⸱rice⸱s
Franceschini N., Fox E., Zhang Z., Edwards TL., Nalls MA., Sung YJ., Tayo BO., Sun YV., Gottesman O., Adeyemo A., Johnson AD., Young J., Rice K., Duan Q., Chen F., Li Y., Tang H., Fornage M., Keene KL., Andrews JS., Smith JA., Faul JD., Guangfa Z., Guo W., Liu Y., Murray SS., Musani SK., Srinivasan S., Velez Edwards DR. , Wang H., Becker LC., Bovet P., Bochud M., Broeckel U., Burnier M., Carty C., Chen WM., Chen G., Chen W., Ding J., Dreisbach AW., Evans MK., Guo X., Garcia ME., Jensen R., Keller MF., Lettre G., Lotay V., Martin LW., Morrison AC., Mosley TH., Ogunniyi A., Palmas W., Papanicolaou G., Penman A., Polak JF., Ridker PM., Salako B., Singleton AB., Shriner D., Taylor KD., Vasan R., Wiggins K., Williams SM., Yanek LR., Zhao W., Zonderman AB., Becker DM., Berenson G., Boerwinkle E., Bottinger E., Cushman M., Eaton C., Heiss G., Hirschhron JN., Howard VJ., Lanktree MB., Liu K., Liu Y., Loos R., Margolis K., Psaty BM., Schork NJ., Weir DR., Rotimi CN., Sale MM., Harris T., Kardia SL., Hunt SC., Arnett D., Redline S., Cooper RS., Risch N., Rao DC., Rotter JI., Chakravarti A., Reiner AP., Levy D., Keating BJ., Zhu X.
ISSN
1537-6605 (Electronic)
ISSN-L
0002-9297
Statut éditorial
Publié
Date de publication
2015
Peer-reviewed
Oui
Volume
96
Numéro
1
Pages
21-36
Langue
anglais
Résumé
Genome-wide association studies (GWASs) have identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple-even distinct-traits. Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome-wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, independent, continuous, or binary traits, which might come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single-trait analysis in most of the cases we studied. We applied our method to the Continental Origins and Genetic Epidemiology Network (COGENT) African ancestry samples for three blood pressure traits and identified four loci (CHIC2, HOXA-EVX1, IGFBP1/IGFBP3, and CDH17; p < 5.0 × 10(-8)) associated with hypertension-related traits that were missed by a single-trait analysis in the original report. Six additional loci with suggestive association evidence (p < 5.0 × 10(-7)) were also observed, including CACNA1D and WNT3. Our study strongly suggests that analyzing multiple phenotypes can improve statistical power and that such analysis can be executed with the summary statistics from GWASs. Our method also provides a way to study a cross phenotype (CP) association by using summary statistics from GWASs of multiple phenotypes.
Mots-clé
Blood Pressure/genetics, Genetic Loci, Genome-Wide Association Study, Humans, Hypertension/genetics, Models, Biological, Phenotype, Polymorphism, Single Nucleotide
Pubmed
Web of science
Open Access
Oui
Création de la notice
03/12/2015 16:32
Dernière modification de la notice
20/08/2019 14:33
Données d'usage