Bayesian Networks and Influence Diagrams
Détails
Télécharger: Preprint_ABFT_BNsIDs.pdf (470.64 [Ko])
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
ID Serval
serval:BIB_74C1A2925AFF
Type
Partie de livre
Sous-type
Chapitre: chapitre ou section
Collection
Publications
Institution
Titre
Bayesian Networks and Influence Diagrams
Titre du livre
Encyclopedia of Forensic Sciences, Third Edition
Editeur
Elsevier
ISBN
9780128236789
Statut éditorial
Publié
Date de publication
2023
Pages
271-280
Langue
anglais
Résumé
Bayesian networks are graphical models that have been developed in the field of artificial intelligence as a framework to help researchers and practitioners apply probability theory to inference problems of substantive size as encountered in real-world applications. Influence diagrams (Bayesian decision networks) extend Bayesian networks to a modeling environment for coherent decision analysis under uncertainty. This article provides an overview of these methods and explains their contribution to the body of formal methods for the study, development and implementation of probabilistic procedures for assessing the probative value of scientific evidence and the coherent analysis of related questions of decision-making.
Mots-clé
Bayes’ theorem, Bayesian network, Decision analysis, Decision theory, DNA evidence, Evidence evaluation and interpretation, Influence diagram, Probability theory, Uncertainty, Value of evidence
Création de la notice
11/11/2022 21:01
Dernière modification de la notice
12/11/2022 7:11