Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly.

Détails

ID Serval
serval:BIB_74BCAB9F2522
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly.
Périodique
Biochemistry
Auteur⸱e⸱s
Fasshauer D., Eliason W.K., Brünger A.T., Jahn R.
ISSN
0006-2960 (Print)
ISSN-L
0006-2960
Statut éditorial
Publié
Date de publication
1998
Peer-reviewed
Oui
Volume
37
Numéro
29
Pages
10354-10362
Langue
anglais
Résumé
Assembly of the three neuronal membrane proteins synaptobrevin, syntaxin, and SNAP-25 is thought to be one of the key steps in mediating exocytosis of synaptic vesicles. In vivo and in vitro, these proteins form a tight complex. Assembly is associated with a large increase in alpha-helical content, suggesting that major structural and conformational changes are associated with the assembly reaction. Limited proteolysis by trypsin, chymotrypsin, and proteinase K of the ternary complex formed from recombinant proteins lacking their membrane anchors revealed a SDS-resistant minimal core. The components of this core complex were purified and characterized by N-terminal sequencing and mass spectrometry. They include a slightly shortened synaptobrevin fragment, C- and N-terminal fragments of SNAP-25, and a C-terminal fragment of syntaxin that is slightly larger than the previously characterized H3 domain. Recombinant proteins corresponding to these fragments are sufficient for assembly and disassembly. In addition, each of the two SNAP-25 fragments can individually form complexes with syntaxin and synaptobrevin, suggesting that they both contribute to the assembly of the SNARE complex. Upon complex assembly, a large increase in alpha-helical content is observed along with a significantly increased melting temperature (Tm). Like the full-length complex, the minimal complex tends to form an oligomeric species; global analysis of equilibrium ultracentrifugation data suggests a monomer-trimer equilibrium exists. These conserved biophysical properties may thus be of fundamental importance in the mechanism of membrane fusion.
Mots-clé
Amino Acid Sequence, Animals, Circular Dichroism, Endopeptidases/pharmacology, Hydrolysis, Macromolecular Substances, Membrane Proteins/chemistry, Membrane Proteins/metabolism, Molecular Sequence Data, Nerve Tissue Proteins/chemistry, Nerve Tissue Proteins/metabolism, Qa-SNARE Proteins, R-SNARE Proteins, Rats, SNARE Proteins, Structure-Activity Relationship, Synaptic Vesicles/chemistry, Synaptic Vesicles/metabolism, Synaptosomal-Associated Protein 25, Vesicular Transport Proteins
Pubmed
Web of science
Création de la notice
15/09/2011 9:45
Dernière modification de la notice
20/08/2019 14:32
Données d'usage