Extremes of randomly scaled Gumbel risks
Détails
Télécharger: R3.IME_fin.pdf (302.98 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_72B8642D8972
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Extremes of randomly scaled Gumbel risks
Périodique
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
Statut éditorial
Publié
Date de publication
02/2018
Peer-reviewed
Oui
Volume
458
Numéro
1
Pages
30-42
Langue
anglais
Résumé
We investigate the product Y1Y2 of two independent positive risks Y1 and Y2. If Y1 has distribution in the Gumbel max-domain of attraction with some auxiliary function which is regularly varying at infinity and Y2 is bounded, then we show that Y1Y2 has also distribution in the Gumbel max-domain of attraction. If both Y1,Y2 have log-Weibullian or Weibullian tail behaviour, we prove that Y1Y2 has log-Weibullian or Weibullian asymptotic tail behaviour, respectively. We present here three theoretical applications concerned with a) the limit of point-wise maxima of randomly scaled Gaussian processes, b) extremes of Gaussian processes over random intervals, and c) the tail of supremum of iterated processes.
Mots-clé
Gumbel max-domain of attraction, Random scaling, Log-Weibullian tail behaviour, Weibullian tail behaviour, Supremum of Gaussian processes, Iteration of random processes
Web of science
Open Access
Oui
Création de la notice
16/10/2017 20:14
Dernière modification de la notice
20/08/2019 14:30