A community effort to assess and improve drug sensitivity prediction algorithms.

Détails

ID Serval
serval:BIB_71822A472839
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
A community effort to assess and improve drug sensitivity prediction algorithms.
Périodique
Nature biotechnology
Auteur⸱e⸱s
Costello J.C., Heiser L.M., Georgii E., Gönen M., Menden M.P., Wang N.J., Bansal M., Ammad-ud-din M., Hintsanen P., Khan S.A., Mpindi J.P., Kallioniemi O., Honkela A., Aittokallio T., Wennerberg K., Collins J.J., Gallahan D., Singer D., Saez-Rodriguez J., Kaski S., Gray J.W., Stolovitzky G.
Collaborateur⸱rice⸱s
NCI DREAM Community
Contributeur⸱rice⸱s
Abbuehl J.P., Aittokallio T., Allen J., Altman R.B., Ammad-ud-din M., Balcome S., Bansal M., Battle A., Bender A., Berger B., Bernard J., Bhattacharjee M., Bhuvaneshwar K., Bieberich A.A., Boehm F., Califano A., Chan C., Chen B., Chen T.H., Choi J., Coelho L.P., Cokelaer T., Collins J.C., Costello J.C., Creighton C.J., Cui J., Dampier W., Davisson V.J., De Baets B., Deshpande R., DiCamillo B., Dundar M., Duren Z., Ertel A., Fan H., Fang H., Gallahan D., Gauba R., Georgii E., Gönen M., Gottlieb A., Grau M., Gray J.W., Gusev Y., Ha M.J., Han L., Harris M., Heiser L.M., Henderson N., Hejase H.A., Hintsanen P., Homicsko K., Honkela A., Hou J.P., Hwang W., IJzerman A.P., Kallioniemi O., Karacali B., Kaski S., Keles S., Kendziorski C., Khan S.A., Kim J., Kim M., Kim Y., Knowles D.A., Koller D., Lee J., Lee J.K., Lenselink E.B., Li B., Li B., Li J., Liang H., Ma J., Madhavan S., Menden M.P., Mooney S., Mpindi J.P., Myers C.L., Newton M.A., Overington J.P., Pal R., Peng J., Pestell R., Prill R.J., Qiu P., Rajwa B., Sadanandam A., Saez-Rodriguez J., Sambo F., Shin H., Singer D., Song J., Song L., Sridhar A., Stock M., Stolovitzky G., Sun W., Ta T., Tadesse M., Tan M., Tang H., Theodorescu D., Toffolo G.M., Tozeren A., Trepicchio W., Varoquaux N., Vert J.P., Waegeman W., Walter T., Wan Q., Wang D., Wang N.J., Wang W., Wang Y., Wang Z., Wegner J.K., Wennerberg K., Wu T., Xia T., Xiao G., Xie Y., Xu Y., Yang J., Yuan Y., Zhang S., Zhang X.S., Zhao J., Zuo C., van Vlijmen H.W., van Westen G.J.
ISSN
1546-1696 (Electronic)
ISSN-L
1087-0156
Statut éditorial
Publié
Date de publication
12/2014
Peer-reviewed
Oui
Volume
32
Numéro
12
Pages
1202-1212
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.
Mots-clé
Algorithms, Antineoplastic Agents/adverse effects, Antineoplastic Agents/therapeutic use, Drug Resistance, Neoplasm/genetics, Epigenomics/methods, Gene Expression Profiling, Gene Expression Regulation, Neoplastic/drug effects, Genomics/methods, Humans, Neoplasms/drug therapy, Neoplasms/genetics, Proteomics/methods
Pubmed
Web of science
Open Access
Oui
Création de la notice
02/06/2022 8:47
Dernière modification de la notice
03/06/2022 5:37
Données d'usage