Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism.
Détails
ID Serval
serval:BIB_6FCF8FFBF8F2
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism.
Périodique
Molecular psychiatry
ISSN
1476-5578 (Electronic)
ISSN-L
1359-4184
Statut éditorial
Publié
Date de publication
07/2016
Peer-reviewed
Oui
Volume
21
Numéro
7
Pages
936-945
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Résumé
Autism spectrum disorder (ASD) is a common neurodevelopmental condition characterized by marked genetic heterogeneity. Recent studies of rare structural and sequence variants have identified hundreds of loci involved in ASD, but our knowledge of the overall genetic architecture and the underlying pathophysiological mechanisms remains incomplete. Glycine receptors (GlyRs) are ligand-gated chloride channels that mediate inhibitory neurotransmission in the adult nervous system but exert an excitatory action in immature neurons. GlyRs containing the α2 subunit are highly expressed in the embryonic brain, where they promote cortical interneuron migration and the generation of excitatory projection neurons. We previously identified a rare microdeletion of the X-linked gene GLRA2, encoding the GlyR α2 subunit, in a boy with autism. The microdeletion removes the terminal exons of the gene (GLRA2(Δex8-9)). Here, we sequenced 400 males with ASD and identified one de novo missense mutation, p.R153Q, absent from controls. In vitro functional analysis demonstrated that the GLRA2(Δex8)(-)(9) protein failed to localize to the cell membrane, while the R153Q mutation impaired surface expression and markedly reduced sensitivity to glycine. Very recently, an additional de novo missense mutation (p.N136S) was reported in a boy with ASD, and we show that this mutation also reduced cell-surface expression and glycine sensitivity. Targeted glra2 knockdown in zebrafish induced severe axon-branching defects, rescued by injection of wild type but not GLRA2(Δex8-9) or R153Q transcripts, providing further evidence for their loss-of-function effect. Glra2 knockout mice exhibited deficits in object recognition memory and impaired long-term potentiation in the prefrontal cortex. Taken together, these results implicate GLRA2 in non-syndromic ASD, unveil a novel role for GLRA2 in synaptic plasticity and learning and memory, and link altered glycinergic signaling to social and cognitive impairments.
Mots-clé
Adolescent, Adult, Animals, Autism Spectrum Disorder/metabolism, Autistic Disorder/metabolism, Child, Child, Preschool, Glycine/genetics, Glycine/metabolism, Humans, Long-Term Potentiation/drug effects, Male, Mice, Mice, Inbred C57BL, Neurogenesis/drug effects, Neuronal Plasticity/drug effects, Neurons/metabolism, Receptors, Glycine/genetics, Receptors, Glycine/metabolism, Signal Transduction/drug effects, Synaptic Transmission/physiology, Zebrafish
Pubmed
Web of science
Création de la notice
15/08/2019 9:11
Dernière modification de la notice
03/09/2019 5:26