An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset.

Détails

Ressource 1Télécharger: s41597-021-00946-3.pdf (12545.73 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_6EB3F06B58CA
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset.
Périodique
Scientific data
Auteur⸱e⸱s
Payette K., de Dumast P., Kebiri H., Ezhov I., Paetzold J.C., Shit S., Iqbal A., Khan R., Kottke R., Grehten P., Ji H., Lanczi L., Nagy M., Beresova M., Nguyen T.D., Natalucci G., Karayannis T., Menze B., Bach Cuadra M., Jakab A.
ISSN
2052-4463 (Electronic)
ISSN-L
2052-4463
Statut éditorial
Publié
Date de publication
06/07/2021
Peer-reviewed
Oui
Volume
8
Numéro
1
Pages
167
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Résumé
It is critical to quantitatively analyse the developing human fetal brain in order to fully understand neurodevelopment in both normal fetuses and those with congenital disorders. To facilitate this analysis, automatic multi-tissue fetal brain segmentation algorithms are needed, which in turn requires open datasets of segmented fetal brains. Here we introduce a publicly available dataset of 50 manually segmented pathological and non-pathological fetal magnetic resonance brain volume reconstructions across a range of gestational ages (20 to 33 weeks) into 7 different tissue categories (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, deep grey matter, brainstem/spinal cord). In addition, we quantitatively evaluate the accuracy of several automatic multi-tissue segmentation algorithms of the developing human fetal brain. Four research groups participated, submitting a total of 10 algorithms, demonstrating the benefits the dataset for the development of automatic algorithms.
Pubmed
Web of science
Données de la recherche
Open Access
Oui
Financement(s)
Fonds national suisse / Projets / 205321_182602
Création de la notice
29/05/2021 7:38
Dernière modification de la notice
20/09/2023 17:28
Données d'usage