Examining Bias in Estimators of Linear Rational Expectations Models under Misspecification

Détails

ID Serval
serval:BIB_6D6792F8442F
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Examining Bias in Estimators of Linear Rational Expectations Models under Misspecification
Périodique
Journal of Econometrics
Auteur⸱e⸱s
Jondeau E., Le Bihan H.
ISSN
0304-4076
Statut éditorial
Publié
Date de publication
2008
Peer-reviewed
Oui
Volume
143
Numéro
2
Pages
375 - 395
Langue
anglais
Résumé
Most rational expectations models involve equations in which the dependent variable is a function of its lags and its expected future value. We investigate the asymptotic bias of GMM and ML estimators in such models under misspecification. We consider several misspecifications, and focus more specifically on the case of omitted dynamics in the dependent variable. In a stylized DGP, we derive analytically the asymptotic biases of these estimators. We establish that in many cases of interest the two estimators of the degree of forward-lookingness are asymptotically biased in opposite direction with respect to the true value of the parameter. We also propose a quasi-Hausman test of misspecification based on the difference between the GMM and ML estimators. Using Monte-Carlo simulations, we show that the ordering and direction of the estimators still hold in a more realistic New Keynesian macroeconomic model. In this set-up, misspecification is in general found to be more harmful to GMM than to ML estimators.
Mots-clé
Generalized Method of Moments, Maximum Likelihood, Rational Expectations Models
Web of science
Création de la notice
19/11/2007 10:32
Dernière modification de la notice
20/08/2019 14:27
Données d'usage