GeoKernels: Modeling of Spatial Data on GeoManifolds

Détails

ID Serval
serval:BIB_6BCB0E0CD345
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
GeoKernels: Modeling of Spatial Data on GeoManifolds
Titre de la conférence
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN, Bruges, Belgium
Auteur⸱e⸱s
Pozdnoukhov A., Kanevski M.
ISBN
2-930307-08-0
Statut éditorial
Publié
Date de publication
2008
Pages
277-282
Langue
anglais
Notes
Pozdnoukhov2008
Résumé
This paper presents a review of methodology for semi-supervised modeling
with kernel methods, when the manifold assumption is guaranteed to
be satisfied. It concerns environmental data modeling on natural
manifolds, such as complex topographies of the mountainous regions,
where environmental processes are highly influenced by the relief.
These relations, possibly regionalized and nonlinear, can be modeled
from data with machine learning using the digital elevation models
in semi-supervised kernel methods. The range of the tools and methodological
issues discussed in the study includes feature selection and semisupervised
Support Vector algorithms. The real case study devoted to data-driven
modeling of meteorological fields illustrates the discussed approach.
Création de la notice
25/11/2013 17:18
Dernière modification de la notice
20/08/2019 14:25
Données d'usage