Oscillatory stimuli differentiate adapting circuit topologies.

Détails

Ressource 1Télécharger: 28846089_BIB_6BAF4B1E8DF8.pdf (936.56 [Ko])
Etat: Public
Version: Author's accepted manuscript
Licence: Non spécifiée
ID Serval
serval:BIB_6BAF4B1E8DF8
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Oscillatory stimuli differentiate adapting circuit topologies.
Périodique
Nature methods
Auteur⸱e⸱s
Rahi S.J., Larsch J., Pecani K., Katsov A.Y., Mansouri N., Tsaneva-Atanasova K., Sontag E.D., Cross F.R.
ISSN
1548-7105 (Electronic)
ISSN-L
1548-7091
Statut éditorial
Publié
Date de publication
10/2017
Peer-reviewed
Oui
Volume
14
Numéro
10
Pages
1010-1016
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Biology emerges from interactions between molecules, which are challenging to elucidate with current techniques. An orthogonal approach is to probe for 'response signatures' that identify specific circuit motifs. For example, bistability, hysteresis, or irreversibility are used to detect positive feedback loops. For adapting systems, such signatures are not known. Only two circuit motifs generate adaptation: negative feedback loops (NFLs) and incoherent feed-forward loops (IFFLs). On the basis of computational testing and mathematical proofs, we propose differential signatures: in response to oscillatory stimulation, NFLs but not IFFLs show refractory-period stabilization (robustness to changes in stimulus duration) or period skipping. Applying this approach to yeast, we identified the circuit dominating cell cycle timing. In Caenorhabditis elegans AWA neurons, which are crucial for chemotaxis, we uncovered a Ca <sup>2+</sup> NFL leading to adaptation that would be difficult to find by other means. These response signatures allow direct access to the outlines of the wiring diagrams of adapting systems.
Mots-clé
Adaptation, Physiological/physiology, Animals, Caenorhabditis elegans, Cell Cycle/physiology, Feedback, Physiological/physiology, Gene Expression Regulation/physiology, Models, Biological, Neurons/physiology, Saccharomyces cerevisiae/genetics, Saccharomyces cerevisiae/metabolism
Pubmed
Web of science
Création de la notice
04/02/2021 18:51
Dernière modification de la notice
24/01/2024 7:13
Données d'usage