Cell type prioritization in single-cell data.
Détails
Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: Author's accepted manuscript
Licence: Non spécifiée
Accès restreint UNIL
Etat: Public
Version: Author's accepted manuscript
Licence: Non spécifiée
ID Serval
serval:BIB_6B2FE5BC2C8B
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Cell type prioritization in single-cell data.
Périodique
Nature biotechnology
ISSN
1546-1696 (Electronic)
ISSN-L
1087-0156
Statut éditorial
Publié
Date de publication
01/2021
Peer-reviewed
Oui
Volume
39
Numéro
1
Pages
30-34
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Intramural ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Résumé
We present Augur, a method to prioritize the cell types most responsive to biological perturbations in single-cell data. Augur employs a machine-learning framework to quantify the separability of perturbed and unperturbed cells within a high-dimensional space. We validate our method on single-cell RNA sequencing, chromatin accessibility and imaging transcriptomics datasets, and show that Augur outperforms existing methods based on differential gene expression. Augur identified the neural circuits restoring locomotion in mice following spinal cord neurostimulation.
Mots-clé
Animals, Chromatin/genetics, Chromatin/metabolism, Computational Biology/methods, Databases, Genetic, Gene Expression Profiling/methods, Machine Learning, Mice, Nerve Net/metabolism, Rats, Sequence Analysis, RNA, Single-Cell Analysis/methods, Transcriptome/genetics, Transcriptome/physiology, Walking/physiology
Pubmed
Web of science
Création de la notice
24/07/2020 12:59
Dernière modification de la notice
09/08/2024 14:52