Environmental Data Mapping with Support Vector Regression and Geostatistics

Détails

ID Serval
serval:BIB_654C2E7F3EE0
Type
Rapport: document publié par une institution, habituellement élément d'une série.
Collection
Publications
Titre
Environmental Data Mapping with Support Vector Regression and Geostatistics
Auteur⸱e⸱s
Kanevski M., Wong P.M., Canu S.
Date de publication
2000
Langue
anglais
Nombre de pages
8
Notes
Kanevski2000
Résumé
The paper presents decision-oriented mapping of pollution using hybrid
models based on statistical learning theory (support vector regression
or SVR) and spatial statistics (geostatistics). Adaptive and robust
SVR approach is used to model non-linear large scale trends in the
region and geostatistical models -- spatial predictions and spatial
simulations -- are used to prepare decisionoriented maps: prediction
maps along with maps of error variance and equiprobable digital models
of the pollution based on conditional stochastic simulations. The
quality of the proposed approach is tested with the validation data
set not used for the model development. Real data on soil contamination
by Chernobyl radionuclides in Russia is used as a case study.
Création de la notice
25/11/2013 17:18
Dernière modification de la notice
20/08/2019 14:21
Données d'usage