Modeling Electric Fields in Transcutaneous Spinal Direct Current Stimulation: A Clinical Perspective.

Détails

Ressource 1Télécharger: 37238953_BIB_63EC9E09C850.pdf (3015.68 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_63EC9E09C850
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Modeling Electric Fields in Transcutaneous Spinal Direct Current Stimulation: A Clinical Perspective.
Périodique
Biomedicines
Auteur⸱e⸱s
Guidetti M., Giannoni-Luza S., Bocci T., Pacheco-Barrios K., Bianchi A.M., Parazzini M., Ionta S., Ferrucci R., Maiorana N.V., Verde F., Ticozzi N., Silani V., Priori A.
ISSN
2227-9059 (Print)
ISSN-L
2227-9059
Statut éditorial
Publié
Date de publication
26/04/2023
Peer-reviewed
Oui
Volume
11
Numéro
5
Pages
1283
Langue
anglais
Notes
Publication types: Journal Article ; Review
Publication Status: epublish
Résumé
Clinical findings suggest that transcutaneous spinal direct current stimulation (tsDCS) can modulate ascending sensitive, descending corticospinal, and segmental pathways in the spinal cord (SC). However, several aspects of the stimulation have not been completely understood, and realistic computational models based on MRI are the gold standard to predict the interaction between tsDCS-induced electric fields and anatomy. Here, we review the electric fields distribution in the SC during tsDCS as predicted by MRI-based realistic models, compare such knowledge with clinical findings, and define the role of computational knowledge in optimizing tsDCS protocols. tsDCS-induced electric fields are predicted to be safe and induce both transient and neuroplastic changes. This could support the possibility to explore new clinical applications, such as spinal cord injury. For the most applied protocol (2-3 mA for 20-30 min, active electrode over T10-T12 and the reference on the right shoulder), similar electric field intensities are generated in both ventral and dorsal horns of the SC at the same height. This was confirmed by human studies, in which both motor and sensitive effects were found. Lastly, electric fields are strongly dependent on anatomy and electrodes' placement. Regardless of the montage, inter-individual hotspots of higher values of electric fields were predicted, which could change when the subjects move from a position to another (e.g., from the supine to the lateral position). These characteristics underlines the need for individualized and patient-tailored MRI-based computational models to optimize the stimulation protocol. A detailed modeling approach of the electric field distribution might contribute to optimizing stimulation protocols, tailoring electrodes' configuration, intensities, and duration to the clinical outcome.
Mots-clé
clinical study, computational models, electric fields, neuromodulation, non-invasive brain stimulation, transcutaneous spinal direct current stimulation
Pubmed
Web of science
Open Access
Oui
Création de la notice
05/06/2023 10:20
Dernière modification de la notice
23/01/2024 7:26
Données d'usage