Multispecies deep learning using citizen science data produces more informative plant community models.

Détails

ID Serval
serval:BIB_59DBBD804FD3
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Multispecies deep learning using citizen science data produces more informative plant community models.
Périodique
Nature communications
Auteur⸱e⸱s
Brun P., Karger D.N., Zurell D., Descombes P., de Witte L.C., de Lutio R., Wegner J.D., Zimmermann N.E.
ISSN
2041-1723 (Electronic)
ISSN-L
2041-1723
Statut éditorial
Publié
Date de publication
24/05/2024
Peer-reviewed
Oui
Volume
15
Numéro
1
Pages
4421
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Résumé
In the age of big data, scientific progress is fundamentally limited by our capacity to extract critical information. Here, we map fine-grained spatiotemporal distributions for thousands of species, using deep neural networks (DNNs) and ubiquitous citizen science data. Based on 6.7 M observations, we jointly model the distributions of 2477 plant species and species aggregates across Switzerland with an ensemble of DNNs built with different cost functions. We find that, compared to commonly-used approaches, multispecies DNNs predict species distributions and especially community composition more accurately. Moreover, their design allows investigation of understudied aspects of ecology. Including seasonal variations of observation probability explicitly allows approximating flowering phenology; reweighting predictions to mirror cover-abundance allows mapping potentially canopy-dominant tree species nationwide; and projecting DNNs into the future allows assessing how distributions, phenology, and dominance may change. Given their skill and their versatility, multispecies DNNs can refine our understanding of the distribution of plants and well-sampled taxa in general.
Mots-clé
Deep Learning, Citizen Science, Switzerland, Plants, Ecosystem, Biodiversity, Seasons, Models, Biological
Pubmed
Open Access
Oui
Création de la notice
14/06/2024 13:08
Dernière modification de la notice
15/06/2024 6:03
Données d'usage