Discovering Customer Journey Maps using a Mixture of Markov Models
Détails
Télécharger: bernard2017Markov.pdf (896.68 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_500C560C6E68
Type
Actes de conférence: ouvrage de compte-rendu (proceedings) ou édition spéciale d'un journal reconnu (conference proceedings) publié à l'occasion de conférences scientifiques.
Collection
Publications
Institution
Titre
Discovering Customer Journey Maps using a Mixture of Markov Models
Editeur
SIMPDA2017
Organisation
IFIP 2.6 International Symposium on Data-Driven Process Discovery and Analysis
Adresse
Neuchatêl, Switzerland
Date de publication
12/2017
Editeur⸱rice scientifique
Harbich Matthieu, Bernard Gaël, Berkes Pietro, Garbinato Benoît, Andritsos Periklis
Nombre de pages
5
Résumé
Customer Journey Maps (CJMs) summarize the behavior of customers by displaying the most common sequences of steps they take when engaging with a company or product. In many practical applications, the challenge lies in automatically discovering these prototypical sequences from raw event logs for thousands of customers. We propose a novel, probabilistic approach based on a mixture of Markov models and show it can reliably extract CJMs with just one input parameter (and potentially none).
Mots-clé
markov models, customer journey mapping, event logs, customer journey analytics
Site de l'éditeur
Création de la notice
12/01/2018 14:57
Dernière modification de la notice
21/08/2019 6:09