Uniqueness of Embedding of Gaussian Probability Measures into a Continuous Convolution Semigroup on Simply Connected Nilpotent Lie Groups

Détails

ID Serval
serval:BIB_4F550213711E
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Uniqueness of Embedding of Gaussian Probability Measures into a Continuous Convolution Semigroup on Simply Connected Nilpotent Lie Groups
Périodique
Comptes Rendus Mathématique
Auteur⸱e⸱s
Neuenschwander  D.
ISSN
1631-073X
Statut éditorial
Publié
Date de publication
2008
Peer-reviewed
Oui
Volume
346
Numéro
15-16
Pages
887-892
Langue
anglais
Résumé
Let {mu((i))(t)}t >= 0 (i = 1.2) be continuous convolution semigroups on a simply connected nilpotent Lie group G. Suppose that mu((1))(1) = mu((2))(1) and that {mu((1))(t)}(t) >= 0 is a Gaussian semigroup (in the sense that its generating distribution just consists of a primitive distribution and a second order differential operator). Then mu((1))(t) = mu((2))(t) for all t >= 0.
Web of science
Création de la notice
08/02/2010 16:01
Dernière modification de la notice
21/08/2019 5:14
Données d'usage