Normality assumption in latent interaction models.

Détails

Ressource 1Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
ID Serval
serval:BIB_4F3D9DACC810
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Normality assumption in latent interaction models.
Périodique
Psychological Methods
Auteur⸱e⸱s
Lonati Sirio, Rönkkö Mikko, Antonakis John
ISSN
1939-1463
1082-989X
ISSN-L
1082-989X
Statut éditorial
In Press
Peer-reviewed
Oui
Langue
anglais
Résumé
Latent moderated structural equation (LMS) is one of the most common techniques for estimating interaction effects involving latent variables (i.e., XWITH command in Mplus). However, empirical applications of LMS often overlook that this estimation technique assumes normally distributed variables and that violations of this assumption may lead to seriously biased parameter estimates. Against this backdrop, we study the robustness of LMS to different shapes and sources of nonnormality and examine whether various statistical tests can help researchers detect such distributional misspecifications. In four simulations, we show that LMS can be severely biased when the latent predictors or the structural disturbances are nonnormal. On the contrary, LMS is unaffected by nonnormality originating from measurement errors. As a result, testing for the multivariate normality of observed indicators of the latent predictors can lead to erroneous conclusions, flagging distributional misspecifications in perfectly unbiased LMS results and failing to reject seriously biased results. To solve this issue, we introduce a novel Hausman-type specification test to assess the distributional assumptions of LMS and demonstrate its performance. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Mots-clé
Psychology (miscellaneous)
Pubmed
Financement(s)
Fonds national suisse / IZ70Z0_131326
Création de la notice
08/04/2024 13:36
Dernière modification de la notice
13/06/2024 6:04
Données d'usage