Breadcrumbs: A Rich Mobility Dataset with Point-of-Interest Annotations (short paper)

Détails

Ressource 1Télécharger: Moro19SIGSPATIAL.pdf (2606.52 [Ko])
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
ID Serval
serval:BIB_4EF866325A1C
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Breadcrumbs: A Rich Mobility Dataset with Point-of-Interest Annotations (short paper)
Titre de la conférence
Proceedings of the 27th ACM International Conference on Advances in Geographic Information Systems (SIGSPATIAL)
Auteur⸱e⸱s
Moro Arielle, Kulkarni Vaibhav, Ghiringhelli Pierre-Adrien, Chapuis Bertil, Huguenin Kévin, Garbinato Benoit
Editeur
ACM
Adresse
Chicago, IL, United States
Statut éditorial
Publié
Date de publication
11/2019
Peer-reviewed
Oui
Pages
508-511
Langue
anglais
Résumé
Rich human mobility datasets are fundamental for evaluating algorithms pertaining to geographic information systems. Unfortunately , existing mobility datasets-that are available to the research community-are restricted to location data captured through a single sensor (typically GPS) and have a low spatiotemporal granularity. They also lack ground-truth data regarding points of interest and the associated semantic labels (e.g., "home", "work", etc.). In this paper, we present Breadcrumbs, a rich mobility dataset collected from multiple sensors (incl. GPS, GSM, WiFi, Bluetooth) on the smartphones of 81 individuals. In addition to sensor data, Breadcrumbs contains ground-truth data regarding people points of interest (incl. semantic labels) as well as demographic attributes, contact records, calendar events, lifestyle information, and social relationship labels between the participants of the study. We describe the data collection methodology and present a preliminary quantitative analysis of the dataset. A sanitized version of the dataset as well as the source code will be made available to the research community.
Création de la notice
25/09/2019 17:35
Dernière modification de la notice
26/04/2024 6:00
Données d'usage