A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits.

Détails

Ressource 1Télécharger: document.pdf (474.94 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
ID Serval
serval:BIB_4E12BE925686
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Compte-rendu: analyse d'une oeuvre publiée.
Collection
Publications
Titre
A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits.
Périodique
BMC Evolutionary Biology
Auteur⸱e⸱s
Li J., Waterhouse R.M., Zdobnov E.M.
ISSN
1471-2148 (Electronic)
ISSN-L
1471-2148
Statut éditorial
Publié
Date de publication
2011
Peer-reviewed
Oui
Volume
11
Pages
337
Langue
anglais
Résumé
First identified in fruit flies with temperature-sensitive paralysis phenotypes, the Drosophila melanogaster TipE locus encodes four voltage-gated sodium (NaV) channel auxiliary subunits. This cluster of TipE-like genes on chromosome 3L, and a fifth family member on chromosome 3R, are important for the optional expression and functionality of the Para NaV channel but appear quite distinct from auxiliary subunits in vertebrates. Here, we exploited available arthropod genomic resources to trace the origin of TipE-like genes by mapping their evolutionary histories and examining their genomic architectures.
We identified a remarkably conserved synteny block of TipE-like orthologues with well-maintained local gene arrangements from 21 insect species. Homologues in the water flea, Daphnia pulex, suggest an ancestral pancrustacean repertoire of four TipE-like genes; a subsequent gene duplication may have generated functional redundancy allowing gene losses in the silk moth and mosquitoes. Intronic nesting of the insect TipE gene cluster probably occurred following the divergence from crustaceans, but in the flour beetle and silk moth genomes the clusters apparently escaped from nesting. Across Pancrustacea, TipE gene family members have experienced intronic nesting, escape from nesting, retrotransposition, translocation, and gene loss events while generally maintaining their local gene neighbourhoods. D. melanogaster TipE-like genes exhibit coordinated spatial and temporal regulation of expression distinct from their host gene but well-correlated with their regulatory target, the Para NaV channel, suggesting that functional constraints may preserve the TipE gene cluster. We identified homology between TipE-like NaV channel regulators and vertebrate Slo-beta auxiliary subunits of big-conductance calcium-activated potassium (BKCa) channels, which suggests that ion channel regulatory partners have evolved distinct lineage-specific characteristics.
TipE-like genes form a remarkably conserved genomic cluster across all examined insect genomes. This study reveals likely structural and functional constraints on the genomic evolution of insect TipE gene family members maintained in synteny over hundreds of millions of years of evolution. The likely common origin of these NaV channel regulators with BKCa auxiliary subunits highlights the evolutionary plasticity of ion channel regulatory mechanisms.
Mots-clé
Animals, Drosophila Proteins/genetics, Drosophila melanogaster/genetics, Evolution, Molecular, Genes, Insect, Genome, Insect, Insect Proteins/genetics, Insects/genetics, Membrane Proteins/genetics, Multigene Family, Phylogeny, Protein Subunits/genetics, Sodium Channels/genetics
Pubmed
Web of science
Open Access
Oui
Création de la notice
20/09/2017 10:06
Dernière modification de la notice
03/01/2020 18:11
Données d'usage