Challenging the robustness of OGD de-identification rules through a hackathon
Détails
Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: Author's accepted manuscript
Licence: CC BY 4.0
Accès restreint UNIL
Etat: Public
Version: Author's accepted manuscript
Licence: CC BY 4.0
Document(s) secondaire(s)
Télécharger: 20190911_FinalPaper.pdf (458.10 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
Etat: Public
Version: Final published version
Licence: Non spécifiée
ID Serval
serval:BIB_4C247B062A56
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Challenging the robustness of OGD de-identification rules through a hackathon
Titre de la conférence
Proceedings of Ongoing Research, Practitioners, Posters, Workshops, and Projects of the International Conference EGOV-CeDEM-ePart 2019
Organisation
IFIP WG8.5 on ICT and Public Administration
Adresse
San Benedetto Del Tronto, Italy
Statut éditorial
Publié
Date de publication
02/09/2019
Peer-reviewed
Oui
Pages
81-89
Langue
anglais
Résumé
With the emergence of the notion of “open innovation”, public organisations are currently undergoing a transformation process. Particularly driven by the idea of open government, the release of data that has been produced and financed by public funds has increased and with it, the risk associated to the publication of sensitive or personal information about citizens. Although the diffusion of open government data (OGD) might be beneficial for the private sector, the disclosure of such data might engender several risks, which could affect an individual’s privacy. In order to avoid this issue, governments worldwide have started to protect the privacy of individuals by applying de-identification rules. However, de-identification is not risk-free. If the de-identified data does not provide sufficient robustness, re-identification (or re-construction) of personal information is possible. In this paper, we describe a practical approach to examine OGD de-identification rules.
Mots-clé
De-identification, Open Government Data, Action Design Research, Hackathon
Open Access
Oui
Création de la notice
21/05/2019 8:39
Dernière modification de la notice
08/08/2024 6:27