Uncertainty as Unavoidable Good
Détails
Télécharger: paper.pdf (63.08 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_4BF75E9CB837
Type
Rapport: document publié par une institution, habituellement élément d'une série.
Sous-type
Working paper: document de travail dans lequel l'auteur présente les résultats de ses travaux de recherche. Les working papers ont pour but de stimuler les discussions scientifiques avec les milieux intéressés et servent de base pour la publication d'articles dans des revues spécialisées.
Collection
Publications
Institution
Titre
Uncertainty as Unavoidable Good
Détails de l'institution
Universität Bielefeld, Center for Uncertainty Studies (CeUS)
ISSN
2941-2358
Date de publication
2023
Volume
5
Langue
anglais
Résumé
In digital history, uncertainty is generally regarded as an unavoidable evil. One generally aims to reduce—and ideally resolve—uncertainty in data as much as possible. However, information systems are not designed to handle the absence of information; we discuss how both SQL’s seemingly simple Null marker and the TEI Guideline’s elaborate facilities for recording “certainty” fail to address the challenges posed by uncertainty. Neither is big data and a “digital historical positivism” a satisfactory answer: the causal models that underpin historical narratives do not simply emerge from a collection of facts. Here, it is necessary to distinguish between two types of uncertainty: historical uncertainty, which concerns the facts of the past, and historiographical uncertainty, which concerns the causal models constructed by historians. The latter results from different interpretations of the causal relations between the facts; given our limited knowledge of the past, it is ultimately irreducible. But it is also this uncertainty that allows us to construct the narratives we need for sense-making. We argue that in this sense uncertainty may be regarded as an unavoidable good and that we should aim to design computational frameworks that treat it as an asset rather than an obstacle.
Mots-clé
uncertainty, historiography, causal models, epistemology
Site de l'éditeur
Open Access
Oui
Financement(s)
Fonds national suisse / Projets / 105211_204305
Création de la notice
30/10/2023 0:59
Dernière modification de la notice
07/11/2023 7:10