A computational model for grid maps in neural populations.

Détails

Ressource 1Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
ID Serval
serval:BIB_4AF9D4C11F3E
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
A computational model for grid maps in neural populations.
Périodique
Journal of computational neuroscience
Auteur⸱e⸱s
Anselmi F., Murray M.M., Franceschiello B.
ISSN
1573-6873 (Electronic)
ISSN-L
0929-5313
Statut éditorial
Publié
Date de publication
05/2020
Peer-reviewed
Oui
Volume
48
Numéro
2
Pages
149-159
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Grid cells in the entorhinal cortex, together with head direction, place, speed and border cells, are major contributors to the organization of spatial representations in the brain. In this work we introduce a novel theoretical and algorithmic framework able to explain the optimality of hexagonal grid-like response patterns. We show that this pattern is a result of minimal variance encoding of neurons together with maximal robustness to neurons' noise and minimal number of encoding neurons. The novelty lies in the formulation of the encoding problem considering neurons as an overcomplete basis (a frame) where the position information is encoded. Through the modern Frame Theory language, specifically that of tight and equiangular frames, we provide new insights about the optimality of hexagonal grid receptive fields. The proposed model is based on the well-accepted and tested hypothesis of Hebbian learning, providing a simplified cortical-based framework that does not require the presence of velocity-driven oscillations (oscillatory model) or translational symmetries in the synaptic connections (attractor model). We moreover demonstrate that the proposed encoding mechanism naturally explains axis alignment of neighbor grid cells and maps shifts, rotations and scaling of the stimuli onto the shape of grid cells' receptive fields, giving a straightforward explanation of the experimental evidence of grid cells remapping under transformations of environmental cues.
Mots-clé
Computational model, Grid cells, Hippocampus
Pubmed
Web of science
Création de la notice
05/03/2020 15:07
Dernière modification de la notice
20/07/2022 5:37
Données d'usage