Functional Diversity of the Litter-Associated Fungi from an Oxalate-Carbonate Pathway Ecosystem in Madagascar
Détails
Télécharger: microorganisms-09-00985-v2.pdf (2270.91 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_4986D33628C5
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Functional Diversity of the Litter-Associated Fungi from an Oxalate-Carbonate Pathway Ecosystem in Madagascar
Périodique
Microorganisms
ISSN
2076-2607
Statut éditorial
Publié
Date de publication
01/05/2021
Peer-reviewed
Oui
Volume
9
Numéro
5
Pages
985
Langue
anglais
Résumé
The oxalate-carbonate pathway (OCP) is a biogeochemical process linking oxalate oxidation and carbonate precipitation. Currently, this pathway is described as a tripartite association involving oxalogenic plants, oxalogenic fungi, and oxalotrophic bacteria. While the OCP has recently received increasing interest given its potential for capturing carbon in soils, there are still many unknowns, especially regarding the taxonomic and functional diversity of the fungi involved in this pathway. To fill this gap, we described an active OCP site in Madagascar, under the influence of the oxalogenic tree Tamarindus indica, and isolated, identified, and characterized 50 fungal strains from the leaf litter. The fungal diversity encompassed three phyla, namely Mucoromycota, Ascomycota, and Basidiomycota, and 23 genera. Using various media, we further investigated their functional potential. Most of the fungal strains produced siderophores and presented proteolytic activities. The majority were also able to decompose cellulose and xylan, but only a few were able to solubilize inorganic phosphate. Regarding oxalate metabolism, several strains were able to produce calcium oxalate crystals while others decomposed calcium oxalate. These results challenge the current view of the OCP by indicating that fungi are both oxalate producers and degraders. Moreover, they strengthen the importance of the role of fungi in C, N, Ca, and Fe cycles.
Mots-clé
Tamarindus indica, calcium oxalate crystals, oxalotrophy, litter, carbon cycle, oxalogenic tree, Kirindy forest
Open Access
Oui
Financement(s)
Fonds national suisse
Création de la notice
25/05/2021 8:17
Dernière modification de la notice
24/12/2022 6:44