MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data.

Détails

ID Serval
serval:BIB_477F3AB1833A
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data.
Périodique
Genome biology
Auteur⸱e⸱s
Finak G., McDavid A., Yajima M., Deng J., Gersuk V., Shalek A.K., Slichter C.K., Miller H.W., McElrath M.J., Prlic M., Linsley P.S., Gottardo R.
ISSN
1474-760X (Electronic)
ISSN-L
1474-7596
Statut éditorial
Publié
Date de publication
10/12/2015
Peer-reviewed
Oui
Volume
16
Pages
278
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Résumé
Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable. We propose a two-part, generalized linear model for such bimodal data that parameterizes both of these features. We argue that the cellular detection rate, the fraction of genes expressed in a cell, should be adjusted for as a source of nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. It provides insights into how networks of co-expressed genes evolve across an experimental treatment. MAST is available at https://github.com/RGLab/MAST .
Mots-clé
Animals, Data Interpretation, Statistical, Dendritic Cells/metabolism, Gene Expression Profiling/methods, Genetic Variation, Humans, Linear Models, Mice, Sequence Analysis, RNA/methods, Single-Cell Analysis, Transcriptome
Pubmed
Web of science
Open Access
Oui
Création de la notice
28/02/2022 11:45
Dernière modification de la notice
23/03/2024 7:24
Données d'usage