Deploying machine learning based data quality controls – Design principles and insights from the field

Détails

Ressource 1Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: Author's accepted manuscript
Licence: Non spécifiée
ID Serval
serval:BIB_46B575AAA402
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Deploying machine learning based data quality controls – Design principles and insights from the field
Titre de la conférence
Proceedings of the International Conference Wirtschaftsinformatik 2022 (WI2022)
Auteur⸱e⸱s
Walter Valérianne, Gyoery Andreas, Legner Christine
Editeur
AIS Electronic Library (AISeL).
Organisation
17th International Conference Wirtschaftsinformatik (WI 2022)
Statut éditorial
Publié
Date de publication
21/02/2022
Peer-reviewed
Oui
Langue
anglais
Résumé
Machine Learning (ML) has become one of the most promising technological advances for enterprises to improve manual, highly resource- and time-consuming processes. Developing and deploying these ML based systems in an organizational setting, however, is linked to a range of processual and technical requirements and implications that researchers and enterprises have only started to comprehend. Based on an Action Design Research approach, this study develops a ML based solution for data quality (DQ) controls, an essential instrument in Data Quality Management. We synthesize our findings through a set of design principles for ML based DQ controls that describe key components in the three phases from proof-of-concept to deployment and business process integration. Our findings lay groundwork for future research in the field of ML based systems for DQ and contribute to the broader IS discourse on how to embed learning-based systems in real-world organizational contexts.
Mots-clé
data quality, data quality controls, machine learning, AI-based systems, rule-based systems
Financement(s)
Autre / Industry grant
Création de la notice
27/02/2022 11:15
Dernière modification de la notice
28/02/2022 6:39
Données d'usage