Trabecular bone score (TBS) the new parameter of 2D texture analysis for the evaluation of 3D bone micro architecture status

Détails

ID Serval
serval:BIB_4549B3617511
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Collection
Publications
Institution
Titre
Trabecular bone score (TBS) the new parameter of 2D texture analysis for the evaluation of 3D bone micro architecture status
Titre de la conférence
3rd Joint Meeting of the European-Calcified-Tissue-Society/International-Bone-and-Mineral-Society
Auteur(s)
Piveteau T., Winzenrieth R., Hans D.
Adresse
Athens, Greece, May 07-11, 2011
ISBN
8756-3282
Statut éditorial
Publié
Date de publication
2011
Peer-reviewed
Oui
Volume
48
Série
Bone
Pages
S176
Langue
anglais
Notes
Publication type : Meeting Abstract
Résumé
X-ray is a technology that is used for numerous applications in the medical field. The process of X-ray projection gives a 2-dimension (2D) grey-level texture from a 3- dimension (3D) object. Until now no clear demonstration or correlation has positioned the 2D texture analysis as a valid indirect evaluation of the 3D microarchitecture. TBS is a new texture parameter based on the measure of the experimental variogram. TBS evaluates the variation between 2D image grey-levels. The aim of this study was to evaluate existing correlations between 3D bone microarchitecture parameters - evaluated from μCT reconstructions - and the TBS value, calculated on 2D projected images. 30 dried human cadaveric vertebrae were acquired on a micro-scanner (eXplorer Locus, GE) at isotropic resolution of 93 μm. 3D vertebral body models were used. The following 3D microarchitecture parameters were used: Bone volume fraction (BV/TV), Trabecular thickness (TbTh), trabecular space (TbSp), trabecular number (TbN) and connectivity density (ConnD). 3D/2D projections has been done by taking into account the Beer-Lambert Law at X-ray energy of 50, 100, 150 KeV. TBS was assessed on 2D projected images. Correlations between TBS and the 3D microarchitecture parameters were evaluated using a linear regression analysis. Paired T-test is used to assess the X-ray energy effects on TBS. Multiple linear regressions (backward) were used to evaluate relationships between TBS and 3D microarchitecture parameters using a bootstrap process. BV/TV of the sample ranged from 18.5 to 37.6% with an average value at 28.8%. Correlations' analysis showedthat TBSwere strongly correlatedwith ConnD(0.856≤r≤0.862; p<0.001),with TbN (0.805≤r≤0.810; p<0.001) and negatively with TbSp (−0.714≤r≤−0.726; p<0.001), regardless X-ray energy. Results show that lower TBS values are related to "degraded" microarchitecture, with low ConnD, low TbN and a high TbSp. The opposite is also true. X-ray energy has no effect onTBS neither on the correlations betweenTBS and the 3Dmicroarchitecture parameters. In this study, we demonstrated that TBS was significantly correlated with 3D microarchitecture parameters ConnD and TbN, and negatively with TbSp, no matter what X-ray energy has been used. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: None declared.
Web of science
Création de la notice
17/05/2011 14:43
Dernière modification de la notice
20/08/2019 13:50
Données d'usage