Structured sparsity for spatially coherent fibre orientation estimation in diffusion MRI.
Détails
ID Serval
serval:BIB_446E8E533FAA
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Structured sparsity for spatially coherent fibre orientation estimation in diffusion MRI.
Périodique
Neuroimage
ISSN
1095-9572 (Electronic)
ISSN-L
1053-8119
Statut éditorial
Publié
Date de publication
2015
Peer-reviewed
Oui
Volume
115
Pages
245-255
Langue
anglais
Résumé
We propose a novel formulation to solve the problem of intra-voxel reconstruction of the fibre orientation distribution function (FOD) in each voxel of the white matter of the brain from diffusion MRI data. The majority of the state-of-the-art methods in the field perform the reconstruction on a voxel-by-voxel level, promoting sparsity of the orientation distribution. Recent methods have proposed a global denoising of the diffusion data using spatial information prior to reconstruction, while others promote spatial regularisation through an additional empirical prior on the diffusion image at each q-space point. Our approach reconciles voxelwise sparsity and spatial regularisation and defines a spatially structured FOD sparsity prior, where the structure originates from the spatial coherence of the fibre orientation between neighbour voxels. The method is shown, through both simulated and real data, to enable accurate FOD reconstruction from a much lower number of q-space samples than the state of the art, typically 15 samples, even for quite adverse noise conditions.
Pubmed
Web of science
Création de la notice
06/07/2015 12:39
Dernière modification de la notice
20/08/2019 13:48