Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury.

Détails

Ressource 1Télécharger: 33771986_BIB_4258AB1CF4BF.pdf (6751.69 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_4258AB1CF4BF
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury.
Périodique
Nature communications
Auteur⸱e⸱s
Bonizzato M., James N.D., Pidpruzhnykova G., Pavlova N., Shkorbatova P., Baud L., Martinez-Gonzalez C., Squair J.W., DiGiovanna J., Barraud Q., Micera S., Courtine G.
ISSN
2041-1723 (Electronic)
ISSN-L
2041-1723
Statut éditorial
Publié
Date de publication
26/03/2021
Peer-reviewed
Oui
Volume
12
Numéro
1
Pages
1925
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Résumé
A spinal cord injury usually spares some components of the locomotor circuitry. Deep brain stimulation (DBS) of the midbrain locomotor region and epidural electrical stimulation of the lumbar spinal cord (EES) are being used to tap into this spared circuitry to enable locomotion in humans with spinal cord injury. While appealing, the potential synergy between DBS and EES remains unknown. Here, we report the synergistic facilitation of locomotion when DBS is combined with EES in a rat model of severe contusion spinal cord injury leading to leg paralysis. However, this synergy requires high amplitudes of DBS, which triggers forced locomotion associated with stress responses. To suppress these undesired responses, we link DBS to the intention to walk, decoded from cortical activity using a robust, rapidly calibrated unsupervised learning algorithm. This contingency amplifies the supraspinal descending command while empowering the rats into volitional walking. However, the resulting improvements may not outweigh the complex technological framework necessary to establish viable therapeutic conditions.
Mots-clé
Animals, Deep Brain Stimulation/methods, Disease Models, Animal, Electric Stimulation/methods, Female, Humans, Locomotion/physiology, Lumbar Vertebrae/physiopathology, Mesencephalon/physiopathology, Motor Cortex/physiopathology, Neurons/physiology, Rats, Inbred Lew, Spinal Cord/physiopathology, Spinal Cord Injuries/physiopathology, Spinal Cord Injuries/therapy, Walking/physiology
Pubmed
Web of science
Open Access
Oui
Création de la notice
05/04/2021 9:11
Dernière modification de la notice
23/01/2024 7:24
Données d'usage