Implications for compressed sensing of a new sampling theorem on the sphere
Détails
Télécharger: BIB_3EC8833CE049.P001.pdf (209.09 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_3EC8833CE049
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Collection
Publications
Institution
Titre
Implications for compressed sensing of a new sampling theorem on the sphere
Titre de la conférence
SPARS 2011, 4th Workshop on Signal Processing with Adaptive Sparse Structured Representations
Adresse
Edinburgh, Scotland, June 27-30, 2011
ISBN
9781471668692
Statut éditorial
Publié
Date de publication
2011
Série
4th Workshop on Signal Processing with Adaptive Sparse Structured Representations
Pages
45
Langue
anglais
Résumé
A sampling theorem on the sphere has been developed
recently, requiring half as many samples as alternative
equiangular sampling theorems on the sphere. A reduction
by a factor of two in the number of samples required to
represent a band-limited signal on the sphere exactly has
important implications for compressed sensing, both in
terms of the dimensionality and sparsity of signals. We
illustrate the impact of this property with an inpainting
problem on the sphere, where we show the superior
reconstruction performance when adopting the new sampling
theorem compared to the alternative.
recently, requiring half as many samples as alternative
equiangular sampling theorems on the sphere. A reduction
by a factor of two in the number of samples required to
represent a band-limited signal on the sphere exactly has
important implications for compressed sensing, both in
terms of the dimensionality and sparsity of signals. We
illustrate the impact of this property with an inpainting
problem on the sphere, where we show the superior
reconstruction performance when adopting the new sampling
theorem compared to the alternative.
Création de la notice
07/01/2014 8:11
Dernière modification de la notice
20/08/2019 13:35