Synchronization-based computation through networks of coupled oscillators

Détails

Ressource 1Télécharger: 26300765_BIB_3D66DC00EA18.pdf (4310.17 [Ko])
Etat: Public
Version: Final published version
ID Serval
serval:BIB_3D66DC00EA18
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Synchronization-based computation through networks of coupled oscillators
Périodique
Frontiers in Computational Neuroscience
Auteur⸱e⸱s
Malagarriga D., García-Vellisca M.A., Villa A.E.P., Buldú J.M., García-Ojalvo J., Pons A.J.
ISSN
1662-5188
Statut éditorial
Publié
Date de publication
04/08/2015
Peer-reviewed
Oui
Volume
9
Pages
NA
Langue
anglais
Résumé
The mesoscopic activity of the brain is strongly dynamical, while at the same time exhibits remarkable computational capabilities. In order to examine how these two features coexist, here we show that the patterns of synchronized oscillations displayed by networks of neural mass models, representing cortical columns, can be used as substrates for Boolean-like computations. Our results reveal that the same neural mass network may process different combinations of dynamical inputs as different logical operations or combinations of them. This dynamical feature of the network allows it to process complex inputs in a very sophisticated manner. The results are reproduced experimentally with electronic circuits of coupled Chua oscillators, showing the robustness of this kind of computation to the intrinsic noise and parameter mismatch of the coupled oscillators. We also show that the information-processing capabilities of coupled oscillations go beyond the simple juxtaposition of logic gates.
Mots-clé
synchronization, neural mass, Chua oscillators, complex networks, information processing, logic gate, Cellular and Molecular Neuroscience, Neuroscience (miscellaneous)
Pubmed
Web of science
Open Access
Oui
Création de la notice
03/08/2017 15:17
Dernière modification de la notice
20/08/2019 13:33
Données d'usage